Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells

Abstract

A major advancement in the treatment of chronic myeloid leukemia (CML) has been the development of imatinib and other BCR-ABL tyrosine kinase inhibitors. MicroRNAs (miRNAs) are small RNA molecules that influence gene expression by post-transcriptional regulation of messenger RNA. It is not yet clear how miRNAs are able to regulate the effectiveness of imatinib in CML. Here, we show that imatinib markedly inhibits expression of miR-30a in human CML cells. miR-30a is a potent inhibitor of autophagy by downregulating Beclin 1 and ATG5 expression. miR-30a mimic or knockdown of autophagy genes (ATGs) such as Beclin 1 and ATG5 by short hairpin RNA enhances imatinib-induced cytotoxicity and promotes mitochondria-dependent intrinsic apoptosis. In contrast, knockdown of miR-30a by antagomir-30a increases the expression of Beclin 1 and ATG5, and inhibits imatinib-induced cytotoxicity. These findings indicate that dysregulation of miR-30a may interfere with the effectiveness of imatinib-mediated apoptosis by an autophagy-dependent pathway, thus representing a novel potential therapeutic target in CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    Article  CAS  Google Scholar 

  2. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 2009; 119: 1109–1123.

    Article  CAS  Google Scholar 

  3. Can G, Ekiz HA, Baran Y . Imatinib induces autophagy through BECLIN-1 and ATG5 genes in chronic myeloid leukemia cells. Hematology 2011; 16: 95–99.

    Article  CAS  Google Scholar 

  4. Helgason GV, Karvela M, Holyoake TL . Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood 2011; 118: 2035–2043.

    Article  CAS  Google Scholar 

  5. Kroemer G, Marino G, Levine B . Autophagy and the integrated stress response. Mol Cell 2010; 40: 280–293.

    Article  CAS  Google Scholar 

  6. Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 2011; 17: 654–666.

    Article  CAS  Google Scholar 

  7. Kimmelman AC . The dynamic nature of autophagy in cancer. Genes Dev 2011; 25: 1999–2010.

    Article  CAS  Google Scholar 

  8. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    CAS  Google Scholar 

  9. Yendamuri S, Calin GA . The role of microRNA in human leukemia: a review. Leukemia 2009; 23: 1257–1263.

    Article  CAS  Google Scholar 

  10. San Jose-Eneriz E, Roman-Gomez J, Jimenez-Velasco A, Garate L, Martin V, Cordeu L et al. MicroRNA expression profiling in imatinib-resistant chronic myeloid leukemia patients without clinically significant ABL1-mutations. Mol Cancer 2009; 8: 69.

    Article  Google Scholar 

  11. Frankel LB, Wen J, Lees M, Hoyer-Hansen M, Farkas T, Krogh A et al. MicroRNA-101 is a potent inhibitor of autophagy. EMBO J 2011; 30: 4628–4641.

    Article  CAS  Google Scholar 

  12. Zou Z, Wu L, Ding H, Wang Y, Zhang Y, Chen X et al. MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing Beclin 1-mediated autophagy. J Biol Chem 2012; 287: 4148–4156.

    Article  CAS  Google Scholar 

  13. Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X et al. Regulation of autophagy by a Beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 2009; 5: 816–823.

    Article  CAS  Google Scholar 

  14. Zhao M, Yang M, Yang L, Yu Y, Xie M, Zhu S et al. HMGB1 regulates autophagy through increasing transcriptional activities of JNK and ERK in human myeloid leukemia cells. BMB Rep 2011; 44: 601–606.

    Article  CAS  Google Scholar 

  15. Jaras M, Johnels P, Hansen N, Agerstam H, Tsapogas P, Rissler M et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci USA 2010; 107: 16280–16285.

    Article  CAS  Google Scholar 

  16. Mizushima N, Yoshimori T, Levine B . Methods in mammalian autophagy research. Cell 2010; 140: 313–326.

    Article  CAS  Google Scholar 

  17. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170: 1101–1111.

    Article  CAS  Google Scholar 

  18. Rousseau J, Gagne V, Labuda M, Beaubois C, Sinnett D, Laverdiere C et al. ATF5 polymorphisms influence ATF function and response to treatment in children with childhood acute lymphoblastic leukemia. Blood 2011; 118: 5883–5890.

    Article  CAS  Google Scholar 

  19. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003; 101: 4701–4707.

    Article  CAS  Google Scholar 

  20. Valent P . Emerging stem cell concepts for imatinib-resistant chronic myeloid leukaemia: implications for the biology, management, and therapy of the disease. Br J Haematol 2008; 142: 361–378.

    Article  CAS  Google Scholar 

  21. Ertmer A, Huber V, Gilch S, Yoshimori T, Erfle V, Duyster J et al. The anticancer drug imatinib induces cellular autophagy. Leukemia 2007; 21: 936–942.

    Article  CAS  Google Scholar 

  22. Gamas P, Marchetti S, Puissant A, Grosso S, Jacquel A, Colosetti P et al. Inhibition of imatinib-mediated apoptosis by the caspase-cleaved form of the tyrosine kinase Lyn in chronic myelogenous leukemia cells. Leukemia 2009; 23: 1500–1506.

    Article  CAS  Google Scholar 

  23. Ohtomo T, Miyazawa K, Naito M, Moriya S, Kuroda M, Itoh M et al. Cytoprotective effect of imatinib mesylate in non-BCR-ABL-expressing cells along with autophagosome formation. Biochem Biophys Res Commun 2010; 391: 310–315.

    Article  CAS  Google Scholar 

  24. Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K . MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 2009; 113: 396–402.

    Article  CAS  Google Scholar 

  25. Yu F, Deng H, Yao H, Liu Q, Su F, Song E . miR-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 2010; 29: 4194–4204.

    Article  CAS  Google Scholar 

  26. Li J, Donath S, Li Y, Qin D, Prabhakar BS, Li P . miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 2010; 6: e1000795.

    Article  Google Scholar 

  27. Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G . Autophagy regulation by p53. Curr Opin Cell Biol 2010; 22: 181–185.

    Article  CAS  Google Scholar 

  28. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M . TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 2007; 26: 2157–2165.

    Article  CAS  Google Scholar 

  29. Durland-Busbice S, Reisman D . Lack of p53 expression in human myeloid leukemias is not due to mutations in transcriptional regulatory regions of the gene. Leukemia 2002; 16: 2165–2167.

    Article  CAS  Google Scholar 

  30. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. Induction of autophagy and inhibition of tumorigenesis by Beclin 1. Nature 1999; 402: 672–676.

    Article  CAS  Google Scholar 

  31. Kang R, Zeh HJ, Lotze MT, Tang D . The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18: 571–580.

    Article  CAS  Google Scholar 

  32. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD et al. A protein conjugation system essential for autophagy. Nature 1998; 395: 395–398.

    Article  CAS  Google Scholar 

  33. Oltvai ZN, Milliman CL, Korsmeyer SJ . Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–619.

    Article  CAS  Google Scholar 

  34. Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 1998; 391: 496–499.

    Article  CAS  Google Scholar 

  35. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ . Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 1997; 139: 1281–1292.

    Article  CAS  Google Scholar 

  36. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC . Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 1998; 95: 4997–5002.

    Article  CAS  Google Scholar 

  37. Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL . The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 1998; 273: 7770–7775.

    Article  CAS  Google Scholar 

  38. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL . Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol 2009; 452: 143–164.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The National Natural Sciences Foundation of China (30973234 and 31171328 to LC) and a grant from the University of Pittsburgh (DT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Yu, D Tang or L Cao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Yang, L., Zhao, M. et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia 26, 1752–1760 (2012). https://doi.org/10.1038/leu.2012.65

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.65

Keywords

This article is cited by

Search

Quick links