Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplasias

5-Azacitidine in aggressive myelodysplastic syndromes regulates chromatin structure at PU.1 gene and cell differentiation capacity

Abstract

Epigenetic 5-azacitidine (AZA) therapy of high-risk myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML) represents a promising, albeit not fully understood, approach. Hematopoietic transcription factor PU.1 is dynamically regulated by upstream regulatory element (URE), whose deletion causes downregulation of PU.1 leading to AML in mouse. In this study a significant group of the high-risk MDS patients, as well as MDS cell lines, displayed downregulation of PU.1 expression within CD34+ cells, which was associated with DNA methylation of the URE. AZA treatment in vitro significantly demethylated URE, leading to upregulation of PU.1 followed by derepression of its transcriptional targets and onset of myeloid differentiation. Addition of colony-stimulating factors (CSFs; granulocyte-CSF, granulocyte–macrophage-CSF and macrophage-CSF) modulated AZA-mediated effects on reprogramming of histone modifications at the URE and cell differentiation outcome. Our data collectively support the importance of modifying the URE chromatin structure as a regulatory mechanism of AZA-mediated activation of PU.1 and induction of the myeloid program in MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 2006; 126: 755–766.

    Article  CAS  Google Scholar 

  2. Dahl R, Simon MC . The importance of PU.1 concentration in hematopoietic lineage commitment and maturation. Blood Cells Mol Dis 2003; 31: 229–233.

    Article  CAS  Google Scholar 

  3. Stopka T, Amanatullah DF, Papetti M, Skoultchi AI . PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J 2005; 24: 3712–3723.

    Article  CAS  Google Scholar 

  4. Burda P, Curik N, Kokavec J, Basova P, Mikulenkova D, Skoultchi AI et al. PU.1 activation relieves GATA-1-mediated repression of Cebpa and Cbfb during leukemia differentiation. Mol Cancer Res 2009; 7: 1693–1703.

    Article  CAS  Google Scholar 

  5. Ross IL, Yue X, Ostrowski MC, Hume DA . Interaction between PU.1 and another Ets family transcription factor promotes macrophage-specific Basal transcription initiation. J Biol Chem 1998; 273: 6662–6669.

    Article  CAS  Google Scholar 

  6. Yamamoto H, Kihara-Negishi F, Yamada T, Hashimoto Y, Oikawa T . Physical and functional interactions between the transcription factor PU.1 and the coactivator CBP. Oncogene 1999; 18: 1495–1501.

    Article  CAS  Google Scholar 

  7. Hoogenkamp M, Krysinska H, Ingram R, Huang G, Barlow R, Clarke D et al. The Pu.1 locus is differentially regulated at the level of chromatin structure and noncoding transcription by alternate mechanisms at distinct developmental stages of hematopoiesis. Mol Cell Biol 2007; 27: 7425–7438.

    Article  CAS  Google Scholar 

  8. Petrovick MS, Hiebert SW, Friedman AD, Hetherington CJ, Tenen DG, Zhang DE . Multiple functional domains of AML1: PU.1 and C/EBPalpha synergize with different regions of AML1. Mol Cell Biol 1998; 18: 3915–3925.

    Article  CAS  Google Scholar 

  9. Wontakal SN, Guo X, Will B, Shi M, Raha D, Mahajan MC et al. A large gene network in immature erythroid cells is controlled by the myeloid and B cell transcriptional regulator PU.1. PLoS Genet 2011; 7: e1001392.

    Article  CAS  Google Scholar 

  10. Okuno Y, Huang G, Rosenbauer F, Evans EK, Radomska HS, Iwasaki H et al. Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol Cell Biol 2005; 25: 2832–2845.

    Article  CAS  Google Scholar 

  11. Chen H, Ray-Gallet D, Zhang P, Hetherington CJ, Gonzalez DA, Zhang DE et al. PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 1995; 11: 1549–1560.

    CAS  Google Scholar 

  12. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 2004; 36: 624–630.

    Article  CAS  Google Scholar 

  13. Steidl U, Steidl C, Ebralidze A, Chapuy B, Han HJ, Will B et al. A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. J Clin Invest 2007; 117: 2611–2620.

    Article  CAS  Google Scholar 

  14. Leddin M, Perrod C, Hoogenkamp M, Ghani S, Assi S, Heinz S et al. Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood 2011; 117: 2827–2838.

    Article  CAS  Google Scholar 

  15. Cook WD, McCaw BJ, Herring C, John DL, Foote SJ, Nutt SL et al. PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood 2004; 104: 3437–3444.

    Article  CAS  Google Scholar 

  16. Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2002; 100: 998–1007.

    Article  CAS  Google Scholar 

  17. Lamandin C, Sagot C, Roumier C, Lepelley P, De Botton S, Cosson A et al. Are PU.1 mutations frequent genetic events in acute myeloid leukemia (AML)? Blood 2002; 100: 4680–4681.

    Article  CAS  Google Scholar 

  18. Vegesna V, Takeuchi S, Hofmann WK, Ikezoe T, Tavor S, Krug U et al. C/EBP-beta, C/EBP-delta, PU.1, AML1 genes: mutational analysis in 381 samples of hematopoietic and solid malignancies. Leuk Res 2002; 26: 451–457.

    Article  CAS  Google Scholar 

  19. Rekhtman N, Radparvar F, Evans T, Skoultchi AI . Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 1999; 13: 1398–1411.

    Article  CAS  Google Scholar 

  20. Nerlov C, Querfurth E, Kulessa H, Graf T . GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 2000; 95: 2543–2551.

    CAS  Google Scholar 

  21. Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 2000; 96: 2641–2648.

    CAS  Google Scholar 

  22. Moreau-Gachelin F, Tavitian A, Tambourin P . Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 1988; 331: 277–280.

    Article  CAS  Google Scholar 

  23. O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 2008; 205: 585–594.

    Article  Google Scholar 

  24. Durual S, Rideau A, Ruault-Jungblut S, Cossali D, Beris P, Piguet V et al. Lentiviral PU.1 overexpression restores differentiation in myeloid leukemic blasts. Leukemia 2007; 21: 1050–1059.

    Article  CAS  Google Scholar 

  25. Tatetsu H, Ueno S, Hata H, Yamada Y, Takeya M, Mitsuya H et al. Down-regulation of PU.1 by methylation of distal regulatory elements and the promoter is required for myeloma cell growth. Cancer Res 2007; 67: 5328–5336.

    Article  CAS  Google Scholar 

  26. Mueller BU, Pabst T, Fos J, Petkovic V, Fey MF, Asou N et al. ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood 2006; 107: 3330–3338.

    Article  CAS  Google Scholar 

  27. Gu ZM, Liu CX, Wu SF, Zhao M, Xu HZ, Liu W et al. PU.1 directly regulates retinoic acid-induced expression of RIG-G in leukemia cells. FEBS Lett 2010; 585: 375–380.

    Article  Google Scholar 

  28. Silverman LR, McKenzie DR, Peterson BL, Holland JF, Backstrom JT, Beach CL et al. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 2006; 24: 3895–3903.

    Article  CAS  Google Scholar 

  29. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 2009; 10: 223–232.

    Article  CAS  Google Scholar 

  30. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002; 20: 2429–2440.

    Article  CAS  Google Scholar 

  31. Fenaux P, Gattermann N, Seymour JF, Hellstrom-Lindberg E, Mufti GJ, Duehrsen U et al. Prolonged survival with improved tolerability in higher-risk myelodysplastic syndromes: azacitidine compared with low dose ara-C. Br J Haematol 2010; 149: 244–249.

    Article  CAS  Google Scholar 

  32. Fenaux P, Bowen D, Gattermann N, Hellstrom-Lindberg E, Hofmann WK, Pfeilstocker M et al. Practical use of azacitidine in higher-risk myelodysplastic syndromes: an expert panel opinion. Leuk Res 2010; 34: 1410–1416.

    Article  CAS  Google Scholar 

  33. Quintas-Cardama A, Santos FP, Garcia-Manero G . Therapy with azanucleosides for myelodysplastic syndromes. Nat Rev Clin Oncol 2010; 7: 433–444.

    Article  CAS  Google Scholar 

  34. Komashko VM, Farnham PJ . 5-Azacytidine treatment reorganizes genomic histone modification patterns. Epigenetics 2010; 5: 229–240.

    Article  CAS  Google Scholar 

  35. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439: 871–874.

    Article  CAS  Google Scholar 

  36. Hernandez-Munoz I, Taghavi P, Kuijl C, Neefjes J, van Lohuizen M . Association of BMI1 with polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol Cell Biol 2005; 25: 11047–11058.

    Article  CAS  Google Scholar 

  37. Li H, Rauch T, Chen ZX, Szabo PE, Riggs AD, Pfeifer GP . The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem 2006; 281: 19489–19500.

    Article  CAS  Google Scholar 

  38. Smallwood A, Esteve PO, Pradhan S, Carey M . Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 2007; 21: 1169–1178.

    Article  CAS  Google Scholar 

  39. Jiemjit A, Fandy TE, Carraway H, Bailey KA, Baylin S, Herman JG et al. p21(WAF1/CIP1) induction by 5-azacytosine nucleosides requires DNA damage. Oncogene 2008; 27: 3615–3623.

    Article  CAS  Google Scholar 

  40. Hu Z, Negrotto S, Gu X, Mahfouz R, Ng KP, Ebrahem Q et al. Decitabine maintains hematopoietic precursor self-renewal by preventing repression of stem cell genes by a differentiation-inducing stimulus. Mol Cancer Ther 2010; 9: 1536–1543.

    Article  CAS  Google Scholar 

  41. Drexler HG, Dirks WG, Macleod RA . Many are called MDS cell lines: one is chosen. Leuk Res 2009; 33: 1011–1016.

    Article  CAS  Google Scholar 

  42. Si J, Boumber YA, Shu J, Qin T, Ahmed S, He R et al. Chromatin remodeling is required for gene reactivation after decitabine-mediated DNA hypomethylation. Cancer Res 2010; 70: 6968–6977.

    Article  CAS  Google Scholar 

  43. Dotti G, Stella CC, Mangoni L, Cottafavi L, Caramatti C, Almici C et al. Granulocyte colony-stimulating factor (G-CSF) prevents dose-limiting neutropenia in lymphoma patients receiving standard dose chemotherapy. Haematologica 1995; 80: 142–145.

    CAS  Google Scholar 

  44. Estey E, Thall P, Andreeff M, Beran M, Kantarjian H, O’Brien S et al. Use of granulocyte colony-stimulating factor before, during, and after fludarabine plus cytarabine induction therapy of newly diagnosed acute myelogenous leukemia or myelodysplastic syndromes: comparison with fludarabine plus cytarabine without granulocyte colony-stimulating factor. J Clin Oncol 1994; 12: 671–678.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The major support of this work comes from the grant (investigators TS and MK) of the Ministry of Industry and Trade (FR-TI2/509). Other support is from Grants NS10310-3/2009, 2B06077, MSM 0021620806 PRVOUK, MSM 0021620808, LC06044, SVV-2011-262507 and SVV-2012, GAUK 251135 82210, GACR P305/12/1033, UNCE 204021. Collaborator's support comes from the Grants NS10632-3/2009, NS9634-4/2008, and Yorkshire Cancer Research (PL). We thank Drs Ulrich Steidl and Daniel Tenen for providing us with the mouse model of PU.1low AML. We are very thankful to all MDS patients participating in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Stopka.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curik, N., Burda, P., Vargova, K. et al. 5-Azacitidine in aggressive myelodysplastic syndromes regulates chromatin structure at PU.1 gene and cell differentiation capacity. Leukemia 26, 1804–1811 (2012). https://doi.org/10.1038/leu.2012.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.47

Keywords

This article is cited by

Search

Quick links