Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

γδT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia

Abstract

Human cytomegalovirus (CMV) infections and relapse of disease remain major problems after allogeneic stem cell transplantation (allo-SCT), in particular in combination with CMV-negative donors or cordblood transplantations. Recent data suggest a paradoxical association between CMV reactivation after allo-SCT and reduced leukemic relapse. Given the potential of Vδ2-negative γδT cells to recognize CMV-infected cells and tumor cells, the molecular biology of distinct γδT-cell subsets expanding during CMV reactivation after allo-SCT was investigated. Vδ2neg γδT-cell expansions after CMV reactivation were observed not only with conventional but also cordblood donors. Expanded γδT cells were capable of recognizing both CMV-infected cells and primary leukemic blasts. CMV and leukemia reactivity were restricted to the same clonal population, whereas other Vδ2neg T cells interact with dendritic cells (DCs). Cloned Vδ1 T-cell receptors (TCRs) mediated leukemia reactivity and DC interactions, but surprisingly not CMV reactivity. Interestingly, CD8αα expression appeared to be a signature of γδT cells after CMV exposure. However, functionally, CD8αα was primarily important in combination with selected leukemia-reactive Vδ1 TCRs, demonstrating for the first time a co-stimulatory role of CD8αα for distinct γδTCRs. Based on these observations, we advocate the exploration of adoptive transfer of unmodified Vδ2neg γδT cells after allo-SCT to tackle CMV reactivation and residual leukemic blasts, as well as application of leukemia-reactive Vδ1 TCR-engineered T cells as alternative therapeutic tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Boeckh M, Geballe AP . Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Invest 2011; 121: 1673–1680.

    Article  CAS  Google Scholar 

  2. Einsele H, Ehninger G, Hebart H, Weber P, Dette S, Link H et al. Incidence of local CMV infection and acute intestinal GVHD in marrow transplant recipients with severe diarrhoea. Bone Marrow Transplant 1994; 14: 955–963.

    CAS  PubMed  Google Scholar 

  3. Takemoto Y, Takatsuka H, Wada H, Mori A, Saheki K, Okada M et al. Evaluation of CMV/human herpes virus-6 positivity in bronchoalveolar lavage fluids as early detection of acute GVHD following BMT: evidence of a significant relationship. Bone Marrow Transplant 2000; 26: 77–81.

    Article  CAS  Google Scholar 

  4. Nichols WG, Corey L, Gooley T, Davis C, Boeckh M . High risk of death due to bacterial and fungal infection among cytomegalovirus (CMV)-seronegative recipients of stem cell transplants from seropositive donors: evidence for indirect effects of primary CMV infection. J Infect Dis 2002; 185: 273–282.

    Article  Google Scholar 

  5. Behrendt CE, Rosenthal J, Bolotin E, Nakamura R, Zaia J, Forman SJ . Donor and recipient CMV serostatus and outcome of pediatric allogeneic HSCT for acute leukemia in the era of CMV-preemptive therapy. Biol Blood Marrow Transplant 2009; 15: 54–60.

    Article  CAS  Google Scholar 

  6. Elmaagacli AH, Steckel NK, Koldehoff M, Hegerfeldt Y, Trenschel R, Ditschkowski M et al. Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood 2011; 118: 1402–1412.

    Article  CAS  Google Scholar 

  7. Crough T, Khanna R . Immunobiology of human cytomegalovirus: from bench to bedside. Clin Microbiol Rev 2009; 22: 76–98.

    Article  CAS  Google Scholar 

  8. Bonneville M, O’Brien RL, Born WK . Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10: 467–478.

    Article  CAS  Google Scholar 

  9. Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G, Bonneville M et al. Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science 1994; 264: 267–270.

    Article  CAS  Google Scholar 

  10. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De LG . Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003; 197: 163–168.

    Article  CAS  Google Scholar 

  11. Bucy RP, Chen CL, Cooper MD . Tissue localization and CD8 accessory molecule expression of T gamma delta cells in humans. J Immunol 1989; 142: 3045–3049.

    CAS  PubMed  Google Scholar 

  12. Deusch K, Luling F, Reich K, Classen M, Wagner H, Pfeffer K . A major fraction of human intraepithelial lymphocytes simultaneously expresses the gamma/delta T cell receptor, the CD8 accessory molecule and preferentially uses the V delta 1 gene segment. Eur J Immunol 1991; 21: 1053–1059.

    Article  CAS  Google Scholar 

  13. Dechanet J, Merville P, Lim A, Retiere C, Pitard V, Lafarge X et al. Implication of gammadelta T cells in the human immune response to cytomegalovirus. J Clin Invest 1999; 103: 1437–1449.

    Article  CAS  Google Scholar 

  14. Knight A, Madrigal AJ, Grace S, Sivakumaran J, Kottaridis P, Mackinnon S et al. The role of Vdelta2-negative gammadelta T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood 2010; 116: 2164–2172.

    Article  CAS  Google Scholar 

  15. Pitard V, Roumanes D, Lafarge X, Couzi L, Garrigue I, Lafon ME et al. Long-term expansion of effector/memory Vdelta2-gammadelta T cells is a specific blood signature of CMV infection. Blood 2008; 112: 1317–1324.

    Article  CAS  Google Scholar 

  16. Puig-Pey I, Bohne F, Benitez C, Lopez M, Martinez-Llordella M, Oppenheimer F et al. Characterization of gammadelta T cell subsets in organ transplantation. Transpl Int 2010; 23: 1045–1055.

    Article  CAS  Google Scholar 

  17. Vermijlen D, Brouwer M, Donner C, Liesnard C, Tackoen M, Van RM et al. Human cytomegalovirus elicits fetal gammadelta T cell responses in utero. J Exp Med 2010; 207: 807–821.

    Article  CAS  Google Scholar 

  18. Lafarge X, Merville P, Cazin MC, Berge F, Potaux L, Moreau JF et al. Cytomegalovirus infection in transplant recipients resolves when circulating gammadelta T lymphocytes expand, suggesting a protective antiviral role. J Infect Dis 2001; 184: 533–541.

    Article  CAS  Google Scholar 

  19. Choudhary A, Davodeau F, Moreau A, Peyrat MA, Bonneville M, Jotereau F . Selective lysis of autologous tumor cells by recurrent gamma delta tumor-infiltrating lymphocytes from renal carcinoma. J Immunol 1995; 154: 3932–3940.

    CAS  PubMed  Google Scholar 

  20. Ferrarini M, Heltai S, Pupa SM, Mernard S, Zocchi R . Killing of laminin receptor-positive human lung cancers by tumor infiltrating lymphocytes bearing gammadelta(+) t-cell receptors. J Natl Cancer Inst 1996; 88: 436–441.

    Article  CAS  Google Scholar 

  21. Maeurer MJ, Martin D, Walter W, Liu K, Zitvogel L, Halusczcak K et al. Human intestinal Vdelta1+ lymphocytes recognize tumor cells of epithelial origin. J Exp Med 1996; 183: 1681–1696.

    Article  CAS  Google Scholar 

  22. Correia DV, Fogli M, Hudspeth K, da Silva MG, Mavilio D, Silva-Santos B . Differentiation of human peripheral blood Vdelta1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 2011; 118: 992–1001.

    Article  CAS  Google Scholar 

  23. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T . Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 1999; 96: 6879–6884.

    Article  CAS  Google Scholar 

  24. Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M et al. Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 2005; 22: 71–80.

    Article  CAS  Google Scholar 

  25. van Dorp S, Pietersma F, Wolfl M, Verdonck LF, Petersen EJ, Lokhorst HM et al. Rituximab treatment before reduced-intensity conditioning transplantation associates with a decreased incidence of extensive chronic GVHD. Biol Blood Marrow Transplant 2009; 15: 671–678.

    Article  CAS  Google Scholar 

  26. van Dorp S, Resemann H, te BL, Pietersma F, van BD, Gmelig-Meyling F et al. The immunological phenotype of rituximab-sensitive chronic graft-versus-host disease: a phase II study. Haematologica 2011; 96: 1380–1384.

    Article  CAS  Google Scholar 

  27. Riddell SR, Greenberg PD . The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods 1990; 128: 189–201.

    Article  CAS  Google Scholar 

  28. Kuball J, Theobald M, Ferreira EA, Hess G, Burg J, Maccagno G et al. Control of organ transplant-associated graft-versus-host disease by activated host lymphocyte infusions. Transplantation 2004; 78: 1774–1779.

    Article  Google Scholar 

  29. Marcu-Malina V, Heijhuurs S, van BM, Hartkamp L, Strand S, Sebestyen Z et al. Redirecting alphabeta T cells against cancer cells by transfer of a broadly tumor-reactive gammadeltaT-cell receptor. Blood 2011; 118: 50–59.

    Article  CAS  Google Scholar 

  30. Allison TJ, Winter CC, Fournie JJ, Bonneville M, Garboczi DN . Structure of a human gammadelta T-cell antigen receptor. Nature 2001; 411: 820–824.

    Article  CAS  Google Scholar 

  31. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C et al. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 2007; 109: 2331–2338.

    Article  CAS  Google Scholar 

  32. Stanislawski T, Voss RH, Lotz C, Sadovnikova E, Willemsen RA, Kuball J et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2001; 2: 962–970.

    Article  CAS  Google Scholar 

  33. Couzi L, Levaillant Y, Jamai A, Pitard V, Lassalle R, Martin K et al. Cytomegalovirus-induced gammadelta T cells associate with reduced cancer risk after kidney transplantation. J Am Soc Nephrol 2010; 21: 181–188.

    Article  CAS  Google Scholar 

  34. Halary F, Pitard V, Dlubek D, Krzysiek R, de la SH, Merville P et al. Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J Exp Med 2005; 201: 1567–1578.

    Article  CAS  Google Scholar 

  35. Leslie DS, Vincent MS, Spada FM, Das H, Sugita M, Morita CT et al. CD1-mediated gamma/delta T cell maturation of dendritic cells. J Exp Med 2002; 196: 1575–1584.

    Article  CAS  Google Scholar 

  36. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 1997; 27: 3135–3142.

    Article  CAS  Google Scholar 

  37. Kuball J, Schmitz FW, Voss RH, Ferreira EA, Engel R, Guillaume P et al. Cooperation of human tumor-reactive CD4+ and CD8+ T cells after redirection of their specificity by a high-affinity p53A2.1-specific TCR. Immunity 2005; 22: 117–129.

    Article  CAS  Google Scholar 

  38. Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T et al. MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 2001; 15: 83–93.

    Article  CAS  Google Scholar 

  39. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T . Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2001; 2: 255–260.

    Article  CAS  Google Scholar 

  40. Godder KT, Henslee-Downey PJ, Mehta J, Park BS, Chiang KY, Abhyankar S et al. Long term disease-free survival in acute leukemia patients recovering with increased gammadelta T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant 2007; 39: 751–757.

    Article  CAS  Google Scholar 

  41. Willcox CR, Pitard V, Netzer S, Couzi L, Salim M, Silberzahn T et al. Cytomegalovirus and tumor stress surveillance by binding of a human gammadelta T cell antigen receptor to endothelial protein C receptor. Nat Immunol 2012; 13: 872–879.

    Article  CAS  Google Scholar 

  42. Couzi L, Pitard V, Sicard X, Garrigue I, Hawchar O, Merville P et al. Antibody-dependent anti-cytomegalovirus activity of human gammadelta T cells expressing CD16 (FcgammaRIIIa). Blood 2012; 119: 1418–1427.

    Article  CAS  Google Scholar 

  43. Cheroutre H . Starting at the beginning: new perspectives on the biology of mucosal T cells. Annu Rev Immunol 2004; 22: 217–246.

    Article  CAS  Google Scholar 

  44. Cheroutre H, Lambolez F . Doubting the TCR coreceptor function of CD8alphaalpha. Immunity 2008; 28: 149–159.

    Article  CAS  Google Scholar 

  45. Srour EF, Leemhuis T, Jenski L, Redmond R, Jansen J . Cytolytic activity of human natural killer cell subpopulations isolated by four-color immunofluorescence flow cytometric cell sorting. Cytometry 1990; 11: 442–446.

    Article  CAS  Google Scholar 

  46. Addison EG, North J, Bakhsh I, Marden C, Haq S, Al-Sarraj S et al. Ligation of CD8alpha on human natural killer cells prevents activation-induced apoptosis and enhances cytolytic activity. Immunology 2005; 116: 354–361.

    Article  CAS  Google Scholar 

  47. Lowdell MW, Ray N, Craston R, Corbett T, Deane M, Prentice HG . The in vitro detection of anti-leukaemia-specific cytotoxicity after autologous bone marrow transplantation for acute leukaemia. Bone Marrow Transplant 1997; 19: 891–897.

    Article  CAS  Google Scholar 

  48. Lowdell MW, Craston R, Samuel D, Wood ME, O’Neill E, Saha V et al. Evidence that continued remission in patients treated for acute leukaemia is dependent upon autologous natural killer cells. Br J Haematol 2002; 117: 821–827.

    Article  CAS  Google Scholar 

  49. Leishman AJ, Naidenko OV, Attinger A, Koning F, Lena CJ, Xiong Y et al. T cell responses modulated through interaction between CD8alphaalpha and the nonclassical MHC class I molecule, TL. Science 2001; 294: 1936–1939.

    Article  CAS  Google Scholar 

  50. Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 2010; 116: 4360–4367.

    Article  CAS  Google Scholar 

  51. Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 2006; 12: 1160–1166.

    Article  CAS  Google Scholar 

  52. Ho WY, Nguyen HN, Wolfl M, Kuball J, Greenberg PD . In vitro methods for generating CD8+ T-cell clones for immunotherapy from the naive repertoire. J Immunol Methods 2006; 310: 40–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the stem cell facility at the UMC Utrecht for technical assistance. We also thank Margreet Brouwer for her expert technical assistance. This work was supported by grants of the ZonMW 43400003, VIDI-ZonMW 917.11.337, LSBR 0902, AICR 10-736 and KWF UU-2010-4669 to JK; DFG Clinical Research Unit 183 and DFG Graduate School 1043 to BP; KWF 2008-4240 to SK; and a FEDER (EU/Région Wallone) grant to DV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kuball.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author Contributions

WS, SvD, SK, FP, SHo, SHe, ZS, CL, VM-M, CG, AM, CD, DV, DvB and JK designed, performed and analyzed experiments; JK supervised all experiments; WS, SvD and JK wrote the manuscript; and all authors agreed on the final manuscript.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheper, W., van Dorp, S., Kersting, S. et al. γδT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leukemia 27, 1328–1338 (2013). https://doi.org/10.1038/leu.2012.374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.374

Keywords

This article is cited by

Search

Quick links