Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Src kinase-induced phosphorylation of annexin A2 mediates glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia

Abstract

MLL-rearranged infant acute lymphoblastic leukemia (ALL) (<1 year of age) are frequently resistant to glucocorticoids, like prednisone and dexamethasone. As poor glucocorticoid responses are strongly associated with therapy failure, overcoming glucocorticoid resistance may be a crucial step towards improving prognosis. Unfortunately, the mechanisms underlying glucocorticoid resistance in MLL-rearranged ALL largely remain obscure. We here defined a gene signature that accurately discriminates between prednisolone-resistant and prednisolone-sensitive MLL-rearranged infant ALL patient samples, demonstrating that, among other genes, high-level ANXA2 is associated with prednisolone resistance in this type of leukemia. Further investigation demonstrated that the underlying factor of this association was the presence of Src kinase-induced phosphorylation (activation) of annexin A2, a process requiring the adapter protein p11 (encoded by human S100A10). shRNA-mediated knockdown of either ANXA2, FYN, LCK or S100A10, all led to inhibition of annexin A2 phosphorylation and resulted in marked sensitization to prednisolone. Likewise, exposure of prednisolone-resistant MLL-rearranged ALL cells to different Src kinase inhibitors exerting high specificity towards FYN and/or LCK had similar effects. In conclusion, we here present a novel mechanism of prednisolone resistance in MLL-rearranged leukemias, and propose that inhibition of annexin A2 phosphorylation embodies a therapeutic strategy for overcoming resistance to glucocorticoids in this highly aggressive type of leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Ramakers-van Woerden NL, Beverloo HB, Veerman AJ, Camitta BM, Loonen AH, van Wering ER et al. In vitro drug-resistance profile in infant acute lymphoblastic leukemia in relation to age, MLL rearrangements and immunophenotype. Leukemia 2004; 18: 521–529.

    Article  CAS  PubMed  Google Scholar 

  2. Pieters R, den Boer ML, Durian M, Janka G, Schmiegelow K, Kaspers GJ et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia--implications for treatment of infants. Leukemia 1998; 12: 1344–1348.

    Article  CAS  PubMed  Google Scholar 

  3. Dordelmann M, Reiter A, Borkhardt A, Ludwig WD, Gotz N, Viehmann S et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 1999; 94: 1209–1217.

    CAS  PubMed  Google Scholar 

  4. Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007; 370: 240–250.

    Article  CAS  PubMed  Google Scholar 

  5. Den Boer ML, Harms DO, Pieters R, Kazemier KM, Gobel U, Korholz D et al. Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia. J Clin Oncol 2003; 21: 3262–3268.

    Article  CAS  PubMed  Google Scholar 

  6. Kaspers GJ, Pieters R, Van Zantwijk CH, Van Wering ER, Van Der Does-Van Den Berg A, Veerman AJ . Prednisolone resistance in childhood acute lymphoblastic leukemia: vitro-vivo correlations and cross-resistance to other drugs. Blood 1998; 92: 259–266.

    CAS  PubMed  Google Scholar 

  7. Stam RW, Den Boer ML, Schneider P, de Boer J, Hagelstein J, Valsecchi MG et al. Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia. Blood 2010; 115: 1018–1025.

    Article  CAS  PubMed  Google Scholar 

  8. Bao H, Jiang M, Zhu M, Sheng F, Ruan J, Ruan C . Overexpression of Annexin II affects the proliferation, apoptosis, invasion and production of proangiogenic factors in multiple myeloma. Int J Hematol 2009; 90: 177–185.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang F, Zhang L, Zhang B, Wei X, Yang Y, Qi RZ et al. Anxa2 plays a critical role in enhanced invasiveness of the multidrug resistant human breast cancer cells. J Proteome Res 2009; 8: 5041–5047.

    Article  CAS  PubMed  Google Scholar 

  10. Braden AR, Kafka MT, Cunningham L, Jones H, Vishwanatha JK . Polymeric nanoparticles for sustained down-regulation of annexin A2 inhibit prostate tumor growth. J Nanosci Nanotechnol 2009; 9: 2856–2865.

    Article  CAS  PubMed  Google Scholar 

  11. Zheng L, Foley K, Huang L, Leubner A, Mo G, Olino K et al. Tyrosine 23 phosphorylation-dependent cell-surface localization of annexin A2 is required for invasion and metastases of pancreatic cancer. PLoS One 2011; 6: e19390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hayes MJ, Moss SE . Annexin 2 has a dual role as regulator and effector of v-Src in cell transformation. J Biol Chem 2009; 284: 10202–10210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He KL, Deora AB, Xiong H, Ling Q, Weksler BB, Niesvizky R et al. Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J Biol Chem 2008; 283: 19192–19200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dassah M, Deora AB, He K, Hajjar KA . The endothelial cell annexin A2 system and vascular fibrinolysis. Gen Physiol Biophys 2009; 28, Spec No Focus F20–F28.

    PubMed  PubMed Central  Google Scholar 

  15. Kaspers GJ, Veerman AJ, Pieters R, Broekema GJ, Huismans DR, Kazemier KM et al. Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested for cellular drug resistance using the methyl-thiazol-tetrazolium assay. Br J Cancer 1994; 70: 1047–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pieters R, Loonen AH, Huismans DR, Broekema GJ, Dirven MW, Heyenbrok MW et al. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions. Blood 1990; 76: 2327–2336.

    CAS  PubMed  Google Scholar 

  17. Spijkers-Hagelstein JA, Schneider P, Hulleman E, de Boer J, Williams O, Pieters R et al. Elevated S100A8/S100A9 expression causes glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia 2012; 26: 1255–1265.

    Article  CAS  PubMed  Google Scholar 

  18. Benjamini Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B. 1995; 57: 289–300.

    Google Scholar 

  19. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP . GenePattern 2.0. Nat Genet 2006; 38: 500–501.

    Article  CAS  PubMed  Google Scholar 

  20. Stam RW, den Boer ML, Schneider P, Nollau P, Horstmann M, Beverloo HB et al. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 2005; 106: 2484–2490.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Bishop A, Witucki L, Kraybill B, Shimizu E, Tsien J et al. Structural basis for selective inhibition of Src family kinases by PP1. Chem Biol 1999; 6: 671–678.

    Article  CAS  PubMed  Google Scholar 

  22. Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ et al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem 1996; 271: 695–701.

    Article  CAS  PubMed  Google Scholar 

  23. Wong WS, Leong KP . Tyrosine kinase inhibitors: a new approach for asthma. Biochim Biophys Acta 2004; 1697: 53–69.

    Article  CAS  PubMed  Google Scholar 

  24. Schenone S, Brullo C, Musumeci F, Botta M . Novel dual Src/Abl inhibitors for hematologic and solid malignancies. Expert Opin Investig Drugs 2010; 19: 931–945.

    Article  CAS  PubMed  Google Scholar 

  25. Gnoni A, Marech I, Silvestris N, Vacca A, Lorusso V . Dasatinib: an anti-tumour agent via Src inhibition. Curr Drug Targets 2011; 12: 563–578.

    Article  CAS  PubMed  Google Scholar 

  26. Stam RW, Schneider P, Hagelstein JA, van der Linden MH, Stumpel DJ, de Menezes RX et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 2010; 115: 2835–2844.

    Article  CAS  PubMed  Google Scholar 

  27. Okamoto M, Hayakawa F, Miyata Y, Watamoto K, Emi N, Abe A et al. Lyn is an important component of the signal transduction pathway specific to FLT3/ITD and can be a therapeutic target in the treatment of AML with FLT3/ITD. Leukemia 2007; 21: 403–410.

    Article  CAS  PubMed  Google Scholar 

  28. Gucalp A, Sparano JA, Caravelli J, Santamauro J, Patil S, Abbruzzi A et al. Phase II trial of saracatinib (AZD0530), an oral src-inhibitor for the treatment of patients with hormone receptor-negative metastatic breast cancer. Clin Breast Cancer 2011; 11: 306–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mackay HJ, Au HJ, McWhirter E, Alcindor T, Jarvi A, Macalpine K et al. A phase II trial of the Src kinase inhibitor saracatinib (AZD0530) in patients with metastatic or locally advanced gastric or gastro esophageal junction (GEJ) adenocarcinoma: a trial of the PMH phase II consortium. Invest New Drugs 2012; 30: 1158–1163.

    Article  CAS  PubMed  Google Scholar 

  30. Fury MG, Baxi S, Shen R, Kelly KW, Lipson BL, Carlson D et al. Phase II study of saracatinib (AZD0530) for patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). Anticancer Res 2011; 31: 249–253.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Renouf DJ, Moore MJ, Hedley D, Gill S, Jonker D, Chen E et al. A phase I/II study of the Src inhibitor saracatinib (AZD0530) in combination with gemcitabine in advanced pancreatic cancer. Invest New Drugs 2012; 30: 779–786.

    Article  CAS  PubMed  Google Scholar 

  32. Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 2004; 36: 453–461.

    Article  CAS  PubMed  Google Scholar 

  33. Manley PW, Cowan-Jacob SW, Mestan J . Advances in the structural biology, design and clinical development of Bcr-Abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochim Biophys Acta 2005; 1754: 3–13.

    Article  CAS  PubMed  Google Scholar 

  34. Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14: 355–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reddy TR, Li C, Guo X, Myrvang HK, Fischer PM, Dekker LV . Design, synthesis, and structure-activity relationship exploration of 1-substituted 4-aroyl-3-hydroxy-5-phenyl-1H-pyrrol-2(5H)-one analogues as inhibitors of the annexin A2-S100A10 protein interaction. J Med Chem 2011; 54: 2080–2094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to all the members and participating hospitals of the INTERFANT study groups for supporting our research by generously providing leukemic samples. Furthermore, we would gratefully thank Ingrid MAA Ariës, Monique L den Boer and Jules PP Meijerink (Pediatric Oncology, Erasmus Medical Center-Sophia’s Childrens Hospital) for providing gene-expression data of pediatric BCP-ALL and T-ALL patient samples.

Author contributions

JAPS-H designed and performed research and wrote the paper; SMP and PS performed research; RP designed and supervised research and reviewed the paper; RWS designed and supervised research and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R W Stam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spijkers-Hagelstein, J., Mimoso Pinhanços, S., Schneider, P. et al. Src kinase-induced phosphorylation of annexin A2 mediates glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia 27, 1063–1071 (2013). https://doi.org/10.1038/leu.2012.372

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.372

Keywords

This article is cited by

Search

Quick links