Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Rapid mobilization of cytotoxic lymphocytes induced by dasatinib therapy

Abstract

Tyrosine kinase inhibitors (TKIs) have potent effects on malignant cells, and they also target kinases in normal cells, which may have therapeutic implications. Using a collection of 55 leukemia patients treated with TKI therapy (chronic myeloid leukemia, n=47; acute lymphoblastic leukemia, n=8), we found that dasatinib, a second-generation broad-spectrum TKI, induced a rapid, dose-dependent and substantial mobilization of non-leukemic lymphocytes and monocytes in blood peaking 1–2 h after an oral intake and the blood counts closely mirrored drug plasma concentration. A preferential mobilization was observed for natural killer (NK), NK T, B and γδ+ T cells. Mobilization was coupled with a more effective transmigration of leukocytes through an endothelial cell layer and improved cytotoxicity of NK cells. Platelet numbers decreased markedly after the drug intake in a proportion of patients. Similar effects on blood cell dynamics and function were not observed with any other TKI (imatinib, nilotinib and bosutinib). Thus, dasatinib induces a unique, rapid mobilization and activation of cytotoxic, extravasation-competent lymphocytes, which may not only enhance antileukemia immune responses but can also be causally related to the side-effect profile of the drug (pleural effusions, thrombocytopenia).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    CAS  Google Scholar 

  2. Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 2010; 362: 2251–2259.

    Article  CAS  Google Scholar 

  3. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2010; 362: 2260–2270.

    Article  CAS  Google Scholar 

  4. le Coutre PD, Giles FJ, Hochhaus A, Apperley JF, Ossenkoppele GJ, Blakesley R et al. Nilotinib in patients with Ph+ chronic myeloid leukemia in accelerated phase following imatinib resistance or intolerance: 24-month follow-up results. Leukemia 2012; 26: 1189–1194.

    Article  CAS  Google Scholar 

  5. Shami PJ, Deininger M . Evolving treatment strategies for patients newly diagnosed with chronic myeloid leukemia: the role of second-generation BCR-ABL inhibitors as first-line therapy. Leukemia 2012; 26: 214–224.

    Article  CAS  Google Scholar 

  6. Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006; 354: 2542–2551.

    Article  Google Scholar 

  7. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006; 354: 2531–2541.

    Article  CAS  Google Scholar 

  8. Hochhaus A, Baccarani M, Deininger M, Apperley JF, Lipton JH, Goldberg SL et al. Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia 2008; 22: 1200–1206.

    Article  CAS  Google Scholar 

  9. Bixby D, Talpaz M . Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia. Leukemia 2011; 25: 7–22.

    Article  CAS  Google Scholar 

  10. Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 2007; 110: 4055–4063.

    Article  CAS  Google Scholar 

  11. Hantschel O, Rix U, Schmidt U, Burckstummer T, Kneidinger M, Schutze G et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc Natl Acad Sci USA 2007; 104: 13283–13288.

    Article  CAS  Google Scholar 

  12. Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 2007; 25: 1035–1044.

    Article  CAS  Google Scholar 

  13. Giles FJ, O’Dwyer M, Swords R . Class effects of tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leukemia 2009; 23: 1698–1707.

    Article  CAS  Google Scholar 

  14. Kreutzman A, Juvonen V, Kairisto V, Ekblom M, Stenke L, Seggewiss R et al. Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood 2010; 116: 772–782.

    Article  CAS  Google Scholar 

  15. Kreutzman A, Ladell K, Koechel C, Gostick E, Ekblom M, Stenke L et al. Expansion of highly differentiated CD8(+) T-cells or NK-cells in patients treated with dasatinib is associated with cytomegalovirus reactivation. Leukemia 2011; 25: 1587–1597.

    Article  CAS  Google Scholar 

  16. Mustjoki S, Ekblom M, Arstila TP, Dybedal I, Epling-Burnette PK, Guilhot F et al. Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia 2009; 23: 1398–1405.

    Article  CAS  Google Scholar 

  17. Nagata Y, Ohashi K, Fukuda S, Kamata N, Akiyama H, Sakamaki H . Clinical features of dasatinib-induced large granular lymphocytosis and pleural effusion. Int J Hematol 2010; 91: 799–807.

    Article  Google Scholar 

  18. Powers JJ, Dubovsky JA, Epling-Burnette PK, Moscinski L, Zhang L, Mustjoki S et al. A molecular and functional analysis of large granular lymphocyte expansions in patients with chronic myelogenous leukemia treated with tyrosine kinase inhibitors. Leuk Lymphoma 2011; 52: 668–679.

    Article  CAS  Google Scholar 

  19. Valent JN, Schiffer CA . Prevalence of large granular lymphocytosis in patients with chronic myelogenous leukemia (CML) treated with dasatinib. Leuk Res 2011; 35: e1–e3.

    Article  Google Scholar 

  20. Rohon P, Porkka K, Mustjoki S . Immunoprofiling of chronic myeloid leukemia patients at diagnosis and during tyrosine kinase inhibitor therapy. Eur J Haematol 2010; 85: 387–398.

    Article  CAS  Google Scholar 

  21. Kim DH, Kamel-Reid S, Chang H, Sutherland R, Jung CW, Kim HJ et al. Natural killer or natural killer/T cell lineage large granular lymphocytosis associated with dasatinib therapy for Philadelphia chromosome positive leukemia. Haematologica 2009; 94: 135–139.

    Article  CAS  Google Scholar 

  22. Porkka K, Koskenvesa P, Lundan T, Rimpilainen J, Mustjoki S, Smykla R et al. Dasatinib crosses the blood–brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood 2008; 112: 1005–1012.

    Article  CAS  Google Scholar 

  23. Bouchet S, Chauzit E, Ducint D, Castaing N, Canal-Raffin M, Moore N et al. Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra performance LC/MS-MS. Clin Chim Acta 2011; 412: 1060–1067.

    Article  CAS  Google Scholar 

  24. Ovaska K, Laakso M, Haapa-Paananen S, Louhimo R, Chen P, Aittomaki V et al. Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme. Genome Med 2010; 2: 65.

    Article  Google Scholar 

  25. Koskinen K, Vainio PJ, Smith DJ, Pihlavisto M, Yla-Herttuala S, Jalkanen S et al. Granulocyte transmigration through the endothelium is regulated by the oxidase activity of vascular adhesion protein-1 (VAP-1). Blood 2004; 103: 3388–3395.

    Article  CAS  Google Scholar 

  26. Salmi M, Koskinen K, Henttinen T, Elima K, Jalkanen S . CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. Blood 2004; 104: 3849–3857.

    Article  CAS  Google Scholar 

  27. Palani S, Maksimow M, Miiluniemi M, Auvinen K, Jalkanen S, Salmi M . Stabilin-1/CLEVER-1, a type 2 macrophage marker, is an adhesion and scavenging molecule on human placental macrophages. Eur J Immunol 2011; 41: 2052–2063.

    Article  CAS  Google Scholar 

  28. Mustjoki S, Hernesniemi S, Rauhala A, Kahkonen M, Almqvist A, Lundan T et al. A novel dasatinib-sensitive RCSD1-ABL1 fusion transcript in chemotherapy-refractory adult pre-B lymphoblastic leukemia with t(1;9)(q24;q34). Haematologica 2009; 94: 1469–1471.

    Article  CAS  Google Scholar 

  29. Luo FR, Yang Z, Camuso A, Smykla R, McGlinchey K, Fager K et al. Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin Cancer Res 2006; 12: 7180–7186.

    Article  CAS  Google Scholar 

  30. Lee SJ, Jung CW, Kim DY, Lee KH, Sohn SK, Kwak JY et al. Retrospective multicenter study on the development of peripheral lymphocytosis following second-line dasatinib therapy for chronic myeloid leukemia. Am J Hematol 2011; 86: 346–350.

    Article  CAS  Google Scholar 

  31. Blake S, Hughes TP, Mayrhofer G, Lyons AB . The Src/ABL kinase inhibitor dasatinib (BMS-354825) inhibits function of normal human T-lymphocytes in vitro. Clin Immunol 2008; 127: 330–339.

    Article  CAS  Google Scholar 

  32. Lee KC, Ouwehand I, Giannini AL, Thomas NS, Dibb NJ, Bijlmakers MJ . Lck is a key target of imatinib and dasatinib in T-cell activation. Leukemia 2010; 24: 896–900.

    Article  CAS  Google Scholar 

  33. Salih J, Hilpert J, Placke T, Grunebach F, Steinle A, Salih HR et al. The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int J Cancer 2010; 127: 2119–2128.

    Article  CAS  Google Scholar 

  34. Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM, Obaid H et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med 2011; 17: 1094–1100.

    Article  CAS  Google Scholar 

  35. Yang Y, Liu C, Peng W, Lizee G, Overwijk WW, Liu Y et al. Anti-tumor T cell responses contribute to the effects of dasatinib on c-KIT mutant murine mastocytoma and are potentiated by anti-OX40. Blood 2012; 120: 4533–4543.

    Article  CAS  Google Scholar 

  36. Porkka K, Khoury HJ, Paquette RL, Matloub Y, Sinha R, Cortes JE . Dasatinib 100 mg once daily minimizes the occurrence of pleural effusion in patients with chronic myeloid leukemia in chronic phase and efficacy is unaffected in patients who develop pleural effusion. Cancer 2010; 116: 377–386.

    Article  CAS  Google Scholar 

  37. Hennigs JK, Keller G, Baumann HJ, Honecker F, Kluge S, Bokemeyer C et al. Multi tyrosine kinase inhibitor dasatinib as novel cause of severe pre-capillary pulmonary hypertension? BMC Pulm Med 2011; 11: 30.

    Article  CAS  Google Scholar 

  38. Quintas-Cardama A, Kantarjian H, O’Brien S, Borthakur G, Bruzzi J, Munden R et al. Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J Clin Oncol 2007; 25: 3908–3914.

    Article  CAS  Google Scholar 

  39. Cortes J, Kim DW, Raffoux E, Martinelli G, Ritchie E, Roy L et al. Efficacy and safety of dasatinib in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blast phase. Leukemia 2008; 22: 2176–2183.

    Article  CAS  Google Scholar 

  40. Danese S, de la Motte C, Reyes BM, Sans M, Levine AD, Fiocchi C . Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. J Immunol 2004; 172: 2011–2015.

    Article  CAS  Google Scholar 

  41. Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR . Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 2011; 29: 1039–1045.

    Article  CAS  Google Scholar 

  42. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 2011; 29: 1046–1051.

    Article  CAS  Google Scholar 

  43. Kullander K, Klein R . Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 2002; 3: 475–486.

    Article  CAS  Google Scholar 

  44. Poliakov A, Cotrina M, Wilkinson DG . Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell 2004; 7: 465–480.

    Article  CAS  Google Scholar 

  45. Sharfe N, Nikolic M, Cimpeon L, Van De Kratts A, Freywald A, Roifman CM . EphA and ephrin-A proteins regulate integrin-mediated T lymphocyte interactions. Mol Immunol 2008; 45: 1208–1220.

    Article  CAS  Google Scholar 

  46. Gleeson M, Bishop NC . The T cell and NK cell immune response to exercise. Ann Transplant 2005; 10: 43–48.

    PubMed  Google Scholar 

  47. Turner JE, Aldred S, Witard OC, Drayson MT, Moss PM, Bosch JA . Latent cytomegalovirus infection amplifies CD8 T-lymphocyte mobilisation and egress in response to exercise. Brain Behav Immun 2010; 24: 1362–1370.

    Article  CAS  Google Scholar 

  48. Schedlowski M, Hosch W, Oberbeck R, Benschop RJ, Jacobs R, Raab HR et al. Catecholamines modulate human NK cell circulation and function via spleen-independent beta 2-adrenergic mechanisms. J Immunol 1996; 156: 93–99.

    CAS  PubMed  Google Scholar 

  49. Dimitrov S, Lange T, Born J . Selective mobilization of cytotoxic leukocytes by epinephrine. J Immunol 2010; 184: 503–511.

    Article  CAS  Google Scholar 

  50. Fan G, Shumay E, Malbon CC, Wang H . c-Src tyrosine kinase binds the beta 2-adrenergic receptor via phospho-Tyr-350, phosphorylates G-protein-linked receptor kinase 2, and mediates agonist-induced receptor desensitization. J Biol Chem 2001; 276: 13240–13247.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kirsi Latvala, Minna Pajuportti, Saara Vaalas, Riikka Sjöroos and Etta Väänänen for expert technical help. This work was supported by the Finnish special governmental subsidy for health sciences, research and training, by the Finnish Cancer Societies, Emil Aaltonen Foundation, Academy of Finland, Finnish Medical Foundation, Sigrid Juselius Foundation, Biocentrum Helsinki, Gyllenberg Foundation, Blood Disease Foundation and KA Johansson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Porkka.

Ethics declarations

Competing interests

FL and RS are employed by Bristol-Myers Squibb. SM and KP have received honoraria and research grants from Novartis and Bristol-Myers Squibb.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mustjoki, S., Auvinen, K., Kreutzman, A. et al. Rapid mobilization of cytotoxic lymphocytes induced by dasatinib therapy. Leukemia 27, 914–924 (2013). https://doi.org/10.1038/leu.2012.348

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.348

Keywords

This article is cited by

Search

Quick links