Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

AMPK inhibition enhances apoptosis in MLL-rearranged pediatric B-acute lymphoblastic leukemia cells

Abstract

The serine/threonine kinase AMP-activated protein kinase (AMPK) and its downstream effectors, including endothelial nitric oxide synthase and BCL-2, are hyperactivated in B-cell precursor-acute lymphoblastic leukemia (BCP-ALL) cells with MLL gene rearrangements. We investigated the role of activated AMPK in supporting leukemic cell survival and evaluated AMPK as a potential drug target. Exposure of leukemic cells to the commercial AMPK inhibitor compound C resulted in massive apoptosis only in cells with MLL gene rearrangements. These results were confirmed by targeting AMPK with specific short hairpin RNAs. Compound C-induced apoptosis was associated with mitochondrial membrane depolarization, reactive oxygen species production, cytochrome c release and caspases cleavage, indicating intrinsic apoptosis pathway activation. Treatment with low concentrations of compound C resulted in a strong antileukemic activity, together with cytochrome c release and cleavage of caspases and poly(ADP-ribose) polymerase, also in MLL-rearranged primary BCP-ALL samples. Moreover, AMPK inhibition in MLL-rearranged cell lines synergistically enhanced the antiproliferative effects of vincristine, daunorubicin, cytarabine, dexamethasone and L-asparaginase in most of the evaluated conditions. Taken together, these results indicate that the activation of the AMPK pathway directly contributes to the survival of MLL-rearranged BCP-ALL cells and AMPK inhibitors could represent a new therapeutic strategy for this high-risk leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hardie DG, Carling D, Carlson M . The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998; 67: 821–855.

    Article  CAS  PubMed  Google Scholar 

  2. Hardie DG, Hawley SA, Scott JW . AMP-activated protein kinase--development of the energy sensor concept. J Physiol 2006; 574: 7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 2007; 449: 496–500.

    Article  CAS  PubMed  Google Scholar 

  4. Alessi DR, Sakamoto K, Bayascas JR . LKB1-dependent signaling pathways. Annu Rev Biochem 2006; 75: 137–163.

    Article  CAS  PubMed  Google Scholar 

  5. Motoshima H, Goldstein BJ, Igata M, Araki E . AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 2006; 574: 63–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

    Article  CAS  PubMed  Google Scholar 

  7. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Müller C, Carling D et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002; 415: 339–343.

    Article  CAS  PubMed  Google Scholar 

  8. Hardie DG, Carling D . The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem 1997; 246: 259–273.

    Article  CAS  PubMed  Google Scholar 

  9. Hardie DG . The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci 2004; 117: 5479–5487.

    Article  CAS  PubMed  Google Scholar 

  10. Wang W, Guan KL . AMP-activated protein kinase and cancer. Acta Physiol (Oxf) 2009; 196: 55–63.

    Article  CAS  Google Scholar 

  11. Fogarty S, Hardie DG . Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 2010; 1804: 581–591.

    Article  CAS  PubMed  Google Scholar 

  12. Green AS, Chapuis N, Maciel TT, Willems L, Lambert M, Arnoult C et al. The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood 2010; 116: 4262–4273.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou W, Han WF, Landree LE, Thupari JN, Pinn ML, Bililign T et al. Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells. Cancer Res 2007; 67: 2964–2971.

    Article  CAS  PubMed  Google Scholar 

  14. Rattan R, Giri S, Singh AK, Singh I . 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem 2005; 280: 39582–39593.

    Article  CAS  PubMed  Google Scholar 

  15. Okoshi R, Ozaki T, Yamamoto H, Ando K, Koida N, Ono S et al. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem 2008; 283: 3979–3987.

    Article  CAS  PubMed  Google Scholar 

  16. Baumann P, Mandl-Weber S, Emmerich B, Straka C, Schmidmaier R . Inhibition of adenosine monophosphate-activated protein kinase induces apoptosis in multiple myeloma cells. Anticancer Drugs 2007; 18: 405–410.

    Article  CAS  PubMed  Google Scholar 

  17. Park HU, Suy S, Danner M, Dailey V, Zhang Y, Li H et al. AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol Cancer Ther 2009; 8: 733–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vucicevic L, Misirkic M, Janjetovic K, Harhaji-Trajkovic L, Prica M, Stevanovic D et al. AMP-activated protein kinase-dependent and -independent mechanisms underlying in vitro antiglioma action of compound C. Biochem Pharmacol 2009; 77: 1684–1693.

    Article  CAS  PubMed  Google Scholar 

  19. Accordi B, Espina V, Giordan M, VanMeter A, Milani G, Galla L et al. Functional protein network activation mapping reveals new potential molecular drug targets for poor prognosis pediatric BCP-ALL. PLoS One 2010; 5: e13552.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gobbi A, Di Berardino C, Scanziani E, Garofalo A, Rivolta A, Fontana G et al. A human acute lymphoblastic leukemia line with the T(4;11) translocation as a model of minimal residual disease in SCID mice. Leuk Res 1997; 21: 1107–1114.

    Article  CAS  PubMed  Google Scholar 

  21. Viola G, Fortunato E, Cecconet L, Del Giudice L, Dall’Acqua F, Basso G . Central role of mitochondria and p53 in PUVA-induced apoptosis in human keratinocytes cell line NCTC-2544. Toxicol Appl Pharmacol 2008; 227: 84–96.

    Article  CAS  PubMed  Google Scholar 

  22. Indraccolo S, Tisato V, Tosello V, Habeler W, Esposito G, Moserle L et al. Interferon-alpha gene therapy by lentiviral vectors contrasts ovarian cancer growth through angiogenesis inhibition. Hum Gene Ther 2005; 16: 957–970.

    Article  CAS  PubMed  Google Scholar 

  23. Accordi B, Pillozzi S, Dell’Orto MC, Cazzaniga G, Arcangeli A, Kronnie GT et al. Hepatocyte growth factor receptor c-MET is associated with FAS and when activated enhances drug-induced apoptosis in pediatric B acute lymphoblastic leukemia with TEL-AML1 translocation. J Biol Chem 2007; 282: 29384–29393.

    Article  CAS  PubMed  Google Scholar 

  24. Basso G, Buldini B, De Zen L, Orfao A . New methodologic approaches for immunophenotyping acute leukemias. Heamatologica 2001; 86: 675–692.

    CAS  Google Scholar 

  25. Mihara K, Imai C, Coustan-Smith E, Dome JS, Dominici M, Vanin E et al. Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. Br J Haematol 2003; 120: 846–849.

    Article  CAS  PubMed  Google Scholar 

  26. Chou TC, Talalay P . Analysis of combined drug effects: a new look at a very old problem. Trends Pharmacol Sci 1983; 4: 450–454.

    Article  CAS  Google Scholar 

  27. Chen MB, Shen WX, Yang Y, Wu XY, Gu JH, Lu PH . Activation of AMP-activated protein kinase is involved in vincristine-induced cell apoptosis in B16 melanoma cell. J Cell Physiol 2011; 226: 1915–1925.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang WB, Wang Z, Shu F, Jin YH, Liu HY, Wang QJ et al. Activation of AMP-activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition. J Biol Chem 2010; 285: 40461–40471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu B, Fan Z, Edgerton SM, Deng XS, Alimova IN, Lind SE et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle 2009; 8: 2031–2040.

    Article  CAS  PubMed  Google Scholar 

  30. Woodard J, Joshi S, Viollet B, Hay N, Platanias LC . AMPK as a therapeutic target in renal cell carcinoma. Cancer Biol Ther 2010; 10: 1168–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sengupta TK, Leclerc GM, Hsieh-Kinser TT, Leclerc GJ, Singh I, Barredo JC . Cytotoxic effect of 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: implication for targeted therapy. Mol Cancer 2007; 6: 46.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kuznetsov JN, Leclerc GJ, Leclerc GM, Barredo JC . AMPK and Akt determine apoptotic cell death following perturbations of one-carbon metabolism by regulating ER stress in acute lymphoblastic leukemia. Mol Cancer Ther 2011; 10: 437–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shaw MM, Gurr WK, McCrimmon RJ, Schorderet DF, Sherwin RS . 5'AMP-activated protein kinase alpha deficiency enhances stress-induced apoptosis in BHK and PC12 cells. J Cell Mol Med 2007; 11: 286–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mizrachy-Schwartz S, Cohen N, Klein S, Kravchenko-Balasha N, Levitzki A . Up-regulation of AMPK in cancer cell lines is mediated through c-Src activation. J Biol Chem 2011; 286: 15268–15277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Byekova YA, Herrmann JL, Xu J, Elmets CA, Athar M . Liver kinase B1 (LKB1) in the pathogenesis of UVB-induced murine basal cell carcinoma. Arch Biochem Biophys 2011; 508: 204–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee JH, Koh H, Kim M, Kim Y, Lee SY, Karess RE et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 2007; 447: 1017–1020.

    Article  CAS  PubMed  Google Scholar 

  37. Bonaccorsi S, Mottier V, Giansanti MG, Bolkan BJ, Williams B, Goldberg ML et al. The Drosophila Lkb1 kinase is required for spindle formation and asymmetric neuroblast division. Development 2007; 134: 2183–2193.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr E Giarin for helping us with the BioBank and Dr R Bortolozzi for figures editing. We are also grateful to Professor D Campana for providing MSCs and constructive comments on the manuscript. This work was supported by grants from the Istituto Superiore di Sanità (Italy/USA program), the Fondazione Città della Speranza, the Associazione Italiana per la Ricerca sul Cancro, the Ministero della Salute (Ricerca Finalizzata 2006—Programma Integrato Oncologia) to GB. Progetto d'Ateneo—Bando 2010 to S.I. and Progetto d'Eccellenza Fondazione CARIPARO to SI and G. teK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Accordi.

Ethics declarations

Competing interests

BA, LL, EP, and GB are co-inventors on pending patent applications that cover findings within this paper and the authors could receive royalties as a consequence. These applications have been licensed to Theranostics Health, Inc., and LL and EP are equity shareholders. The other authors declare no competing financial interests.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Accordi, B., Galla, L., Milani, G. et al. AMPK inhibition enhances apoptosis in MLL-rearranged pediatric B-acute lymphoblastic leukemia cells. Leukemia 27, 1019–1027 (2013). https://doi.org/10.1038/leu.2012.338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.338

Keywords

This article is cited by

Search

Quick links