Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Mutations of epigenetic regulators and of the spliceosome machinery in therapy-related myeloid neoplasms and in acute leukemias evolved from chronic myeloproliferative diseases

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Leone G, Fianchi L, Voso MT . Therapy-related myeloid neoplasms. Curr Opin Oncol 2011; 23: 672–680.

    Article  CAS  Google Scholar 

  2. Kosmider O, Delabesse E, de Mas VM, Cornillet-Lefebvre P, Blanchet O, Delmer A et al. TET2 mutations in secondary acute myeloid leukemias: a French retrospective study. Haematologica 2011; 96: 1059–1063.

    Article  CAS  Google Scholar 

  3. D'Alò F, Fianchi L, Fabiani E, Criscuolo M, Greco M, Guidi F et al. Similarities and differences between therapy-related and elderly acute myeloid leukemia. Mediterr J Hematol Infect Dis 2011; 3: e2011052.

    Article  Google Scholar 

  4. Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 2012; 21: 430–446.

    Article  CAS  Google Scholar 

  5. Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 2009; 114: 3448–3458.

    Article  CAS  Google Scholar 

  6. Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O'Keefe C et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 2009; 113: 1315–1325.

    Article  CAS  Google Scholar 

  7. Greco M, D'Alò F, Scardocci A, Criscuolo M, Fabiani E, Guidi F et al. Promoter methylation of DAPK1, E-cadherin and thrombospondin-1 in de novo and therapy-related myeloid neoplasms. Blood Cells Mol Dis 2010; 45: 181–185.

    Article  CAS  Google Scholar 

  8. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64–69.

    Article  CAS  Google Scholar 

  9. Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 2011; 118: 6239–6246.

    Article  CAS  Google Scholar 

  10. Fried I, Bodner C, Pichler MM, Lind K, Beham-Schmid C, Quehenberger F et al. Frequency, onset and clinical impact of somatic DNMT3A mutations in therapy-related and secondary acute myeloid leukemia. Haematologica 2012; 97: 246–250.

    Article  CAS  Google Scholar 

  11. Ottone T, Cicconi L, Hasan SK, Lavorgna S, Divona M, Voso MT et al. Comparative molecular analysis of therapy-related and de novo acute promyelocytic leukemia. Leuk Res 2012; 36: 474–478.

    Article  CAS  Google Scholar 

  12. Tefferi A, Lasho TL, Abdel-Wahab O, Guglielmelli P, Patel J, Caramazza D et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia 2010; 24: 1302–1309.

    Article  CAS  Google Scholar 

  13. Zhang SJ, Rampal R, Manshouri T, Patel J, Mensah N, Kayserian A et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood 2012; 119: 4480–4485.

    Article  CAS  Google Scholar 

  14. Finazzi G, Caruso V, Marchioli R, Capnist G, Chisesi T, Finelli C et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood 2005; 105: 2664–2670.

    Article  CAS  Google Scholar 

  15. Kiladjian JJ, Chevret S, Dosquet C, Chomienne C, Rain JD . Treatment of polycythemia vera with hydroxyurea and pipobroman: final results of a randomized trial initiated in 1980. J Clin Oncol 2011; 29: 3907–3913.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Associazione Italiana Ricerca sul Cancro (AIRC) and FIRB (RBAP11TF7Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M T Voso.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voso, M., Fabiani, E., Fianchi, L. et al. Mutations of epigenetic regulators and of the spliceosome machinery in therapy-related myeloid neoplasms and in acute leukemias evolved from chronic myeloproliferative diseases. Leukemia 27, 982–985 (2013). https://doi.org/10.1038/leu.2012.267

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.267

This article is cited by

Search

Quick links