Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenström macroglobulinemia/lymphoplasmacytic lymphomas

Abstract

To clarify the relationships between marginal zone lymphomas (MZLs) and Waldenström macroglobulinemia/lymphoplasmacytic lymphomas (WM/LPLs), immunoglobulin heavy chain variable gene (IGHV) features were analyzed and the occurrence of MYD88 L265P mutations was identified in a series of 123 patients: 53 MZLs from the spleen (SMZLs), 11 from lymph nodes (NMZLs), 28 mucosa-associated lymphatic tissue (MALT) lymphomas and 31 WM/LPLs. SMZLs were characterized by overrepresentation of IGHV1–2 gene rearrangements with a canonical motif, without selection pressure and with long CDR3 segments. NMZLs had increased frequencies of IGHV3 genes. The IGHV gene was unmutated in most cases, often with long CDR3 segments. MALT lymphomas were usually associated with a mutated IGHV gene, but with the absence of selection pressure. WM/LPLs were associated with an IGHV3–23 overrepresentation and high IGHV mutation rate, with features of selection pressure and short CDR3 segments. MYD88 L265P mutations were almost restricted exclusively to WM/LPL patients. Taken all diagnoses together, all patients with MYD88 L265P mutations had an immunoglobulin M peak and almost all patients except one had bone marrow infiltration. These results demonstrate that the history of antigen exposure of the four entities studied was different and MYD88 L265P was specifically associated with WM/LPLs. WM/LPL may thus be functionally associated with constitutive nuclear factor-κB activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ruiz-Ballesteros E, Mollejo M, Rodriguez A, Camacho FI, Algara P, Martinez N et al. Splenic marginal zone lymphoma: proposal of new diagnostic and prognostic markers identified after tissue and cDNA microarray analysis. Blood 2005; 106: 1831–1838.

    Article  CAS  PubMed  Google Scholar 

  2. Isaacson PG . Update on MALT lymphomas. Best Pract Res Clin Haematol 2005; 18: 57–68.

    Article  CAS  PubMed  Google Scholar 

  3. Berger F, Traverse-Glehen A, Felman P, Callet-Bauchu E, Baseggio L, Gazzo S et al. Clinicopathologic features of Waldenstrom’s macroglobulinemia and marginal zone lymphoma: are they distinct or the same entity? Clin Lymphoma 2005; 5: 220–224.

    Article  PubMed  Google Scholar 

  4. Piris MA, Arribas A, Mollejo M . Marginal zone lymphoma. Semin Diagn Pathol 2011; 28: 135–145.

    Article  PubMed  Google Scholar 

  5. Swerdlow SHCE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC. Press: Lyon, 2008.

    Google Scholar 

  6. Arcaini L, Burcheri S, Rossi A, Paulli M, Bruno R, Passamonti F et al. Prevalence of HCV infection in nongastric marginal zone B-cell lymphoma of MALT. Ann Oncol 2007; 18: 346–350.

    Article  CAS  PubMed  Google Scholar 

  7. Thieblemont C, Davi F, Noguera ME, Briere J . Non-MALT marginal zone lymphoma. Curr Opin Hematol 2011; 18: 273–279.

    Article  PubMed  Google Scholar 

  8. Arcaini L, Lucioni M, Boveri E, Paulli M . Nodal marginal zone lymphoma: current knowledge and future directions of an heterogeneous disease. Eur J Haematol 2009; 83: 165–174.

    Article  PubMed  Google Scholar 

  9. Rinaldi A, Mian M, Chigrinova E, Arcaini L, Bhagat G, Novak U et al. Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. Blood 2011; 117: 1595–1604.

    Article  CAS  PubMed  Google Scholar 

  10. Arribas JA, Campos-Martin Y, Gomez-Abad C, Algara P, Sanchez-Beato M, Rodriguez-Pinilla MS et al. Nodal marginal zone lymphoma: gene expression and miRNA profiling identify diagnostic markers and potential therapeutic targets. Blood 2011; 119: e9–e21.

    Article  PubMed  Google Scholar 

  11. Craig VJ, Arnold I, Gerke C, Huynh MQ, Wundisch T, Neubauer A et al. Gastric MALT lymphoma B cells express polyreactive, somatically mutated immunoglobulins. Blood 2010; 115: 581–591.

    Article  CAS  PubMed  Google Scholar 

  12. Parrens M, Gachard N, Petit B, Marfak A, Troadec E, Bouabdhalla K et al. Splenic marginal zone lymphomas and lymphoplasmacytic lymphomas originate from B-cell compartments with two different antigen-exposure histories. Leukemia 2008; 22: 1621–1624.

    Article  CAS  PubMed  Google Scholar 

  13. Zibellini S, Capello D, Forconi F, Marcatili P, Rossi D, Rattotti S et al. Stereotyped patterns of B-cell receptor in splenic marginal zone lymphoma. Haematologica 2010; 95: 1792–1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Warsame AA, Aasheim HC, Nustad K, Troen G, Tierens A, Wang V et al. Splenic marginal zone lymphoma with VH1-02 gene rearrangement expresses poly- and self-reactive antibodies with similar reactivity. Blood 2011; 118: 3331–3339.

    Article  CAS  PubMed  Google Scholar 

  15. Bikos V, Darzentas N, Hadzidimitriou A, Davis Z, Hockley S, Traverse-Glehen A et al. Over 30% of patients with splenic marginal zone lymphoma express the same immunoglobulin heavy variable gene: ontogenetic implications. Leukemia 2012; 26: 1638–1646.

    Article  CAS  PubMed  Google Scholar 

  16. Martin-Jimenez P, Garcia-Sanz R, Balanzategui A, Alcoceba M, Ocio E, Sanchez ML et al. Molecular characterization of heavy chain immunoglobulin gene rearrangements in Waldenstrom’s macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Haematologica 2007; 92: 635–642.

    Article  CAS  PubMed  Google Scholar 

  17. Walsh SH, Laurell A, Sundstrom G, Roos G, Sundstrom C, Rosenquist R . Lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia derives from an extensively hypermutated B cell that lacks ongoing somatic hypermutation. Leuk Res 2005; 29: 729–734.

    Article  CAS  PubMed  Google Scholar 

  18. Sahota SS, Forconi F, Ottensmeier CH, Provan D, Oscier DG, Hamblin TJ et al. Typical Waldenstrom macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events. Blood 2002; 100: 1505–1507.

    CAS  PubMed  Google Scholar 

  19. Kriangkum J, Taylor BJ, Treon SP, Mant MJ, Belch AR, Pilarski LM . Clonotypic IgM V/D/J sequence analysis in Waldenstrom macroglobulinemia suggests an unusual B-cell origin and an expansion of polyclonal B cells in peripheral blood. Blood 2004; 104: 2134–2142.

    Article  CAS  PubMed  Google Scholar 

  20. Treon SP, Xu L, Zhou Y, Liu X, Yang G, Cao Y et al. Whole Genome Sequencing Reveals a Widely Expressed Mutation (MYD88 L265P) with Oncogenic Activity in Waldenstrom's Macroglobulinemia. Blood, ed. American Society of Hematology Annual Meeting 2011; 118, (abstract 300).

  21. Xu L, Sohani AR, Arcaini L, Hunter Z, Yang G, Zhou Y et al. A somatic variant in MYD88 (L265P) revealed by whole genome sequencing differentiates lymphoplasmacytic lymphoma from marginal zone lymphomas. Blood, ed. American Society of Hematology Annual Meeting 2011; 118, (abstract 261).

  22. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470: 115–119.

    Article  CAS  PubMed  Google Scholar 

  23. Yan Q, Huang Y, Watkins AJ, Kocialkowski S, Zeng N, Hamoudi RA et al. BCR and TLR signaling pathways are recurrently targeted by genetic changes in splenic marginal zone lymphomas. Haematologica 2012; 97: 595–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  PubMed  Google Scholar 

  25. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR et al. Fluorescence detection in automated DNA sequence analysis. Nature 1986; 321: 674–679.

    Article  CAS  PubMed  Google Scholar 

  26. Brochet X, Lefranc MP, Giudicelli V . IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res 2008; 36: W503–W508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mollova S, Retter I, Müller W . Visualising the immune repertoire. BMC Syst Biol 2007; 1 (Suppl 1): P30.

    Article  Google Scholar 

  28. Lossos IS, Alizadeh AA, Eisen MB, Chan WC, Brown PO, Botstein D et al. Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. Proc Natl Acad Sci USA 2000; 97: 10209–10213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang B, Casali P . The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol Today 1994; 15: 367–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Petit B, Chaury MP, Le Clorennec C, Jaccard A, Gachard N, Moalic-Judge S et al. Indolent lymphoplasmacytic and marginal zone B-cell lymphomas: absence of both IRF4 and Ki67 expression identifies a better prognosis subgroup. Haematologica 2005; 90: 200–206.

    CAS  PubMed  Google Scholar 

  31. Petit B, Parrens M, Soubeyran I, Costes-Martineau V, Gachard N, Boulin M et al. Among 157 marginal zone lymphomas, DBA.44(CD76) expression is restricted to tumour cells infiltrating the red pulp of the spleen with a diffuse architectural pattern. Histopathology 2009; 54: 626–631.

    Article  PubMed  Google Scholar 

  32. Traverse-Glehen A, Baseggio L, Salles G, Felman P, Berger F . Splenic marginal zone B-cell lymphoma: a distinct clinicopathological and molecular entity. Recent advances in ontogeny and classification. Curr Opin Oncol 2011; 23: 441–448.

    Article  CAS  PubMed  Google Scholar 

  33. McMaster ML, Caporaso N . Waldenstrom macroglobulinaemia and IgM monoclonal gammopathy of undetermined significance: emerging understanding of a potential precursor condition. Br J Haematol 2007; 139: 663–671.

    Article  CAS  PubMed  Google Scholar 

  34. Vitolo U, Ferreri AJ, Montoto S . Lymphoplasmacytic lymphoma-Waldenstrom’s macroglobulinemia. Crit Rev Oncol Hematol 2008; 67: 172–185.

    Article  PubMed  Google Scholar 

  35. Harris NLJE, Stein H, Vardiman JW (eds). World Health Organization Classification of Tumors: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC. Press: Lyon, 2001.

    Google Scholar 

  36. Waldenström J . Kliniska metoder för påvusande av hyperproteinämi och deras praktiska värde för diagnostiken. Nordisk Med 1943; 20: 2288.

    Google Scholar 

  37. Dimopoulos MA, Chen C, Kastritis E, Gavriatopoulou M, Treon SP . Bortezomib as a treatment option in patients with Waldenstrom macroglobulinemia. Clin Lymphoma Myeloma Leuk 2010; 10: 110–117.

    Article  CAS  PubMed  Google Scholar 

  38. Traverse-Glehen A, Davi F, Ben Simon E, Callet-Bauchu E, Felman P, Baseggio L et al. Analysis of VH genes in marginal zone lymphoma reveals marked heterogeneity between splenic and nodal tumors and suggests the existence of clonal selection. Haematologica 2005; 90: 470–478.

    CAS  PubMed  Google Scholar 

  39. Marasca R, Vaccari P, Luppi M, Zucchini P, Castelli I, Barozzi P et al. Immunoglobulin gene mutations and frequent use of VH1-69 and VH4-34 segments in hepatitis C virus-positive and hepatitis C virus-negative nodal marginal zone B-cell lymphoma. Am J Pathol 2001; 159: 253–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Camacho FI, Algara P, Mollejo M, Garcia JF, Montalban C, Martinez N et al. Nodal marginal zone lymphoma: a heterogeneous tumor: a comprehensive analysis of a series of 27 cases. Am J Surg Pathol 2003; 27: 762–771.

    Article  PubMed  Google Scholar 

  41. Meffre E, Davis E, Schiff C, Cunningham-Rundles C, Ivashkiv LB, Staudt LM et al. Circulating human B cells that express surrogate light chains and edited receptors. Nat Immunol 2000; 1: 207–213.

    Article  CAS  PubMed  Google Scholar 

  42. Duty JA, Szodoray P, Zheng NY, Koelsch KA, Zhang Q, Swiatkowski M et al. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. J Exp Med 2009; 206: 139–151.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Jeanne Cook-Moreau for careful re-reading of the manuscript and English editing. We thank the French tumor banks of hospital university campus of Limoges, Bordeaux and Montpellier as well as Institut Bergonié (France) for providing biological material. We are grateful to Pr Frédéric Davi (Laboratoire d’Hématologie, CHU Pitié-Salpétrière, Paris, France) for helpful scientific discussions. This work was supported by Comités Limousin Ligue contre le Cancer, Comité Orientation de la Recherche en Cancérologie (CORC Limousin) and Institut National du Cancer (ACI Program 2007 and PAIR program 2008). We thank Dr Florence Bosselut (Laboratoire d’Hématologie, CHU Dupuytren, Limoges, France) for monitoring clinical data. Finally, we thank the reviewers for their very helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Feuillard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gachard, N., Parrens, M., Soubeyran, I. et al. IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenström macroglobulinemia/lymphoplasmacytic lymphomas. Leukemia 27, 183–189 (2013). https://doi.org/10.1038/leu.2012.257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.257

Keywords

This article is cited by

Search

Quick links