Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional Control and Signal Transduction

Transcriptional suppression of BACH2 by the Bcr-Abl oncoprotein is mediated by PAX5

Abstract

Bach2 is a lymphoid-specific transcription factor with a prominent role in B-cell development and apoptosis-induction in response to oxidative stress. We previously showed that Bach2 is downregulated in chronic myeloid leukaemia (CML), and here we demonstrate the mechanism by which Bcr-Abl mediates this phenomenon. We have cloned a 3.9 Kb genomic DNA fragment upstream of the transcription initiation site, and delineated the core and proximal BACH2 promoter regions. Transient BCR-ABL expression led to significant reduction in BACH2 promoter activity and this effect was dependent on the kinase function of the oncoprotein. Sequential deletions disclosed several regulatory elements within the promoter region, as well as within BACH2 exonic sequences. Analysis of these elements and transient transfection assays led to the identification of the Pax5 transcription factor as a potent trans-activator of BACH2, whose effect is predominantly mediated through occupation of a binding site on the BACH2 promoter, as demonstrated by both in vitro and in vivo experiments. Overall, our data show that Pax5 functions as an intermediate effector in the Bcr-Abl-mediated transcriptional repression of BACH2. The current results, combined with previous reports, establish Pax5 and Bach2 as transcriptional targets of Bcr-Abl, whose downregulation may contribute to lymphoid blast crisis of CML.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Deininger MW, Goldman JM, Melo JV . The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356.

    CAS  Google Scholar 

  2. Cortes J, Kantarjian HM, Giralt S, Talpaz M . Natural history and staging of chronic myelogenous leukaemia. Baillieres Clin Haematol 1997; 10: 277–290.

    Article  CAS  Google Scholar 

  3. Bacher U, Haferlach T, Hiddemann W, Schnittger S, Kern W, Schoch C . Additional clonal abnormalities in Philadelphia-positive ALL and CML demonstrate a different cytogenetic pattern at diagnosis and follow different pathways at progression. Cancer Genet Cytogenet 2005; 157: 53–61.

    Article  CAS  Google Scholar 

  4. Wong S, Witte ON . The BCR-ABL story: bench to bedside and back. Annu Rev Immunol 2004; 22: 247–306.

    Article  CAS  Google Scholar 

  5. Barnes DJ, Melo JV . Cytogenetic and molecular genetic aspects of chronic myeloid leukaemia. Acta Haematol 2002; 108: 180–202.

    Article  CAS  Google Scholar 

  6. Canitrot Y, Falinski R, Louat T, Laurent G, Cazaux C, Hoffmann JS et al. p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to ultraviolet (UV) radiation. Blood 2003; 102: 2632–2637.

    Article  CAS  Google Scholar 

  7. Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E et al. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 2004; 104: 3746–3753.

    Article  CAS  Google Scholar 

  8. Deininger MW, Vieira S, Mendiola R, Schultheis B, Goldman JM, Melo JV . BCR-ABL tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia. Cancer Res 2000; 60: 2049–2055.

    CAS  PubMed  Google Scholar 

  9. Deininger MW, Vieira SA, Parada Y, Banerji L, Lam EW, Peters G et al. Direct relation between BCR-ABL tyrosine kinase activity and cyclin D2 expression in lymphoblasts. Cancer Res 2001; 61: 8005–8013.

    CAS  PubMed  Google Scholar 

  10. Vieira SA, Deininger MW, Sorour A, Sinclair P, Foroni L, Goldman JM et al. Transcription factor BACH2 is transcriptionally regulated by the BCR/ABL oncogene. Genes Chromosomes Cancer 2001; 32: 353–363.

    Article  CAS  Google Scholar 

  11. Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 1996; 16: 6083–6095.

    Article  CAS  Google Scholar 

  12. Muto A, Hoshino H, Madisen L, Yanai N, Obinata M, Karasuyama H et al. Identification of Bach2 as a B-cell-specific partner for small maf proteins that negatively regulate the immunoglobulin heavy chain gene 3' enhancer. EMBO J 1998; 17: 5734–5743.

    Article  CAS  Google Scholar 

  13. Muto A, Tashiro S, Tsuchiya H, Kume A, Kanno M, Ito E et al. Activation of Maf/AP-1 repressor Bach2 by oxidative stress promotes apoptosis and its interaction with promyelocytic leukemia nuclear bodies. J Biol Chem 2002; 277: 20724–20733.

    Article  CAS  Google Scholar 

  14. Muto A, Tashiro S, Nakajima O, Hoshino H, Takahashi S, Sakoda E et al. The transcriptional programme of antibody class switching involves the repressor Bach2. Nature 2004; 429: 566–571.

    Article  CAS  Google Scholar 

  15. Yoshida C, Yoshida F, Sears DE, Hart SM, Ikebe D, Muto A et al. Bcr-Abl signaling through the PI-3/S6 kinase pathway inhibits nuclear translocation of the transcription factor Bach2, which represses the antiapoptotic factor heme oxygenase-1. Blood 2007; 109: 1211–1219.

    Article  CAS  Google Scholar 

  16. Cobaleda C, Schebesta A, Delogu A, Busslinger M . Pax5: the guardian of B cell identity and function. Nat Immunol 2007; 8: 463–470.

    Article  CAS  Google Scholar 

  17. Wakatsuki Y, Neurath MF, Max EE, Strober W . The B cell-specific transcription factor BSAP regulates B cell proliferation. J Exp Med 1994; 179: 1099–1108.

    Article  CAS  Google Scholar 

  18. Qiu G, Stavnezer J . Overexpression of BSAP/Pax-5 inhibits switching to IgA and enhances switching to IgE in the I.29 mu B cell line. J Immunol 1998; 161: 2906–2918.

    CAS  PubMed  Google Scholar 

  19. Usui T, Wakatsuki Y, Matsunaga Y, Kaneko S, Koseki H, Kita T . Overexpression of B cell-specific activator protein (BSAP/Pax-5) in a late B cell is sufficient to suppress differentiation to an Ig high producer cell with plasma cell phenotype. J Immunol 1997; 158: 3197–3204.

    CAS  PubMed  Google Scholar 

  20. Fernandez dM, Essafi A, Soeiro I, Pietersen AM, Birkenkamp KU, Edwards CS et al. FoxO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism. Mol Cell Biol 2004; 24: 10058–10071.

    Article  Google Scholar 

  21. Rance JB, Follows GA, Cockerill PN, Bonifer C, Lane DA, Simmonds RE . Regulation of the human endothelial cell protein C receptor gene promoter by multiple Sp1 binding sites. Blood 2003; 101: 4393–4401.

    Article  CAS  Google Scholar 

  22. Sato H, Wang D, Kudo A . Dissociation of Pax-5 from KI and KII sites during kappa-chain gene rearrangement correlates with its association with the underphosphorylated form of retinoblastoma. J Immunol 2001; 166: 6704–6710.

    Article  CAS  Google Scholar 

  23. Sawado T, Igarashi K, Groudine M . Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter. Proc Natl Acad Sci USA 2001; 98: 10226–10231.

    Article  CAS  Google Scholar 

  24. Strahl BD, Allis CD . The language of covalent histone modifications. Nature 2000; 403: 41–45.

    Article  CAS  Google Scholar 

  25. Schebesta A, McManus S, Salvagiotto G, Delogu A, Busslinger GA, Busslinger M . Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function. Immunity 2007; 27: 49–63.

    Article  CAS  Google Scholar 

  26. Essafi A, Fernandez dM, Hassen YA, Soeiro I, Mufti GJ, Thomas NS et al. Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 2005; 24: 2317–2329.

    Article  CAS  Google Scholar 

  27. Kuroda J, Puthalakath H, Cragg MS, Kelly PN, Bouillet P, Huang DC et al. Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA 2006; 103: 14907–14912.

    Article  CAS  Google Scholar 

  28. Perrotti D, Calabretta B . Post-transcriptional mechanisms in BCR/ABL leukemogenesis: role of shuttling RNA-binding proteins. Oncogene 2002; 21: 8577–8583.

    Article  CAS  Google Scholar 

  29. Perrotti D, Calabretta B . Translational regulation by the p210 BCR/ABL oncoprotein. Oncogene 2004; 23: 3222–3229.

    Article  CAS  Google Scholar 

  30. Iervolino A, Santilli G, Trotta R, Guerzoni C, Cesi V, Bergamaschi A et al. hnRNP A1 nucleocytoplasmic shuttling activity is required for normal myelopoiesis and BCR/ABL leukemogenesis. Mol Cell Biol 2002; 22: 2255–2266.

    Article  CAS  Google Scholar 

  31. Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K et al. BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet 2002; 30: 48–58.

    Article  CAS  Google Scholar 

  32. Rahman M, Hirabayashi Y, Ishii T, Kodera T, Watanabe M, Takasawa N et al. A repressor element in the 5'-untranslated region of human Pax5 exon 1A. Gene 2001; 263: 59–66.

    Article  CAS  Google Scholar 

  33. McManus S, Ebert A, Salvagiotto G, Medvedovic J, Sun Q, Tamir I et al. The transcription factor Pax5 regulates its target genes by recruiting chromatin-modifying proteins in committed B cells. EMBO J 2011; 30: 2388–2404.

    Article  CAS  Google Scholar 

  34. Hamada T, Yonetani N, Ueda C, Maesako Y, Akasaka H, Akasaka T et al. Expression of the PAX5/BSAP transcription factor in haematological tumour cells and further molecular characterization of the t(9;14)(p13;q32) translocation in B-cell non-Hodgkin's lymphoma. Br J Haematol 1998; 102: 691–700.

    Article  CAS  Google Scholar 

  35. Stuart ET, Kioussi C, Aguzzi A, Gruss P . PAX5 expression correlates with increasing malignancy in human astrocytomas. Clin Cancer Res 1995; 1: 207–214.

    CAS  PubMed  Google Scholar 

  36. Li X, Cheung KF, Ma X, Tian L, Zhao J, Go MY et al. Epigenetic inactivation of paired box gene 5, a novel tumor suppressor gene, through direct upregulation of p53 is associated with prognosis in gastric cancer patients. Oncogene 2012; 31: 3419–3430.

    Article  CAS  Google Scholar 

  37. Iacobucci I, Lonetti A, Paoloni F, Papayannidis C, Ferrari A, Storlazzi CT et al. The PAX5 gene is frequently rearranged in BCR-ABL1-positive acute lymphoblastic leukemia but is not associated with outcome. A report on behalf of the GIMEMA Acute Leukemia Working Party. Haematologica 2010; 95: 1683–1690.

    Article  CAS  Google Scholar 

  38. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  Google Scholar 

  39. Kawamata N, Pennella MA, Woo JL, Berk AJ, Koeffler HP . Dominant-negative mechanism of leukemogenic PAX5 fusions. Oncogene 2012; 31: 966–977.

    Article  CAS  Google Scholar 

  40. An Q, Wright SL, Konn ZJ, Matheson E, Minto L, Moorman AV et al. Variable breakpoints target PAX5 in patients with dicentric chromosomes: a model for the basis of unbalanced translocations in cancer. Proc Natl Acad Sci USA 2008; 105: 17050–17054.

    Article  CAS  Google Scholar 

  41. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003; 102: 2951–2959.

    Article  CAS  Google Scholar 

  42. Bhojwani D, Kang H, Menezes RX, Yang W, Sather H, Moskowitz NP et al. Gene expression signatures predictive of early response and outcome in high-risk childhood acute lymphoblastic leukemia: A Children's Oncology Group Study [corrected]. J Clin Oncol 2008; 26: 4376–4384.

    Article  CAS  Google Scholar 

  43. Klemm L, Duy C, Iacobucci I, Kuchen S, von Levetzow G, Feldhahn N et al. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell 2009; 16: 232–245.

    Article  CAS  Google Scholar 

  44. Zhang X, Lin Z, Kim I . Pax5 expression in non-Hodgkin's lymphomas and acute leukemias. J Korean Med Sci 2003; 18: 804–808.

    Article  CAS  Google Scholar 

  45. Scherle PA, Dorshkind K, Witte ON . Clonal lymphoid progenitor cell lines expressing the BCR/ABL oncogene retain full differentiative function. Proc Natl Acad Sci USA 1990; 87: 1908–1912.

    Article  CAS  Google Scholar 

  46. Neurath MF, Strober W, Wakatsuki Y . The murine Ig 3' alpha enhancer is a target site with repressor function for the B cell lineage-specific transcription factor BSAP (NF-HB, S alpha-BP). J Immunol 1994; 153: 730–742.

    CAS  PubMed  Google Scholar 

  47. Griesser H, Tkachuk D, Reis MD, Mak TW . Gene rearrangements and translocations in lymphoproliferative diseases. Blood 1989; 73: 1402–1415.

    CAS  PubMed  Google Scholar 

  48. Poppe B, De Paepe P, Michaux L, Dastugue N, Bastard C, Herens C et al. PAX5/IGH rearrangement is a recurrent finding in a subset of aggressive B-NHL with complex chromosomal rearrangements. Genes Chromosomes Cancer 2005; 44: 218–223.

    Article  CAS  Google Scholar 

  49. Kamio T, Toki T, Kanezaki R, Sasaki S, Tandai S, Terui K et al. The B cell-specific transcription factor BACH2 modifies the cytotoxic effects of anticancer drugs. Blood 2003; 102: 3317–3322.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Andreas Reimold and Dr Brian Druker for donation of plasmids, Dr Elizabeth Buchdunger for donation of imatinib, Drs Hiromu Sato, Gina Mollica and Helen Ambrose (Imperial College London) for their advice on electrophoretic mobility shift assay experiments, and Drs Eleanor Need and Grant Buchanan (Freemasons Foundation Centre for Mens Health, University of Adelaide) for advice on ChIP experiments. This work was sponsored by the Leukaemia & Lymphoma Research Fund, UK, the LEUKA Trust, UK, the NIHR Biomedical Research Centre Funding Scheme, UK and CAPES, Ministry of Education, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J V Melo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casolari, D., Makri, M., Yoshida, C. et al. Transcriptional suppression of BACH2 by the Bcr-Abl oncoprotein is mediated by PAX5. Leukemia 27, 409–415 (2013). https://doi.org/10.1038/leu.2012.220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.220

Keywords

This article is cited by

Search

Quick links