Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma

Abstract

Tumor-associated B7-H1 molecules inhibit antitumor immunity in some malignancies. We found that B7-H1 expression on patient myeloma cells and human myeloma cell lines (HMCLs) was upregulated by cultivating the cells with autologous stromal cells and the human stromal cell line HS-5. Among major cytokines produced by HS-5 cells, interleukin (IL)-6-induced B7-H1 expression on HMCLs. Moreover, HS-5 cell-mediated B7-H1 expression was downregulated by inhibiting IL-6. B7-H1+ HMCLs were more proliferative and less susceptible to antimyeloma chemotherapy compared with B7-H1 HMCLs. Moreover, the former cells showed higher levels of Bcl-2 and FasL expression than the latter. Finally, B7-H1 molecules on HMCLs induced T-cell apoptosis and anergy of tumor-specific T cells. Consistent with these in vitro observations, patients whose myeloma cells expressed high levels of B7-H1 had higher myeloma cell percentages in the bone marrow (BM) and higher serum lactate dehydrogenase levels compared with other myeloma patients. In addition, B7-H1 expression levels were often upregulated after myeloma patients relapsed or became refractory to therapy. Our data indicate that the BM microenvironment upregulates B7-H1 expression on myeloma cells, which links to the two biological actions of inducing T-cell downregulation and enhancing aggressive myeloma-cell characteristics. Modulating the B7-H1 pathway may be worthwhile in myeloma.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dong H, Zhu G, Tamada K, Chen L . B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5: 1365–1369.

    Article  CAS  PubMed  Google Scholar 

  2. Tamura H, Dong H, Zhu G, Sica GL, Flies DB, Tamada K et al. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood 2001; 97: 1809–1816.

    Article  CAS  PubMed  Google Scholar 

  3. Wang S, Bajorath J, Flies DB, Dong H, Honjo T, Chen L . Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction. J Exp Med 2003; 197: 1083–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tamura H, Ogata K, Dong H, Chen L . Immunology of B7-H1 and its roles in human diseases. Int J Hematol 2003; 78: 321–328.

    Article  CAS  PubMed  Google Scholar 

  5. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192: 1027–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ishida Y, Agata Y, Shibahara K, Honjo T . Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992; 11: 3887–3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ . Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007; 27: 111–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Butte MJ, Pena-Cruz V, Kim MJ, Freeman GJ, Sharpe AH . Interaction of human PD-L1 and B7-1. Mol Immunol 2008; 45: 3567–3572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8: 793–800.

    Article  CAS  PubMed  Google Scholar 

  10. Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS et al. Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 2004; 101: 17174–17179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghebeh H, Mohammed S, Al-Omair A, Qattan A, Lehe C, Al-Qudaihi G et al. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 2006; 8: 190–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M . B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 2004; 10: 5094–5100.

    Article  CAS  PubMed  Google Scholar 

  13. Yamamoto R, Nishikori M, Tashima M, Sakai T, Ichinohe T, Takaori-Kondo A et al. B7-H1 expression is regulated by MEK/ERK signaling pathway in anaplastic large cell lymphoma and Hodgkin lymphoma. Cancer Sci 2009; 100: 2093–2100.

    Article  CAS  PubMed  Google Scholar 

  14. Kondo A, Yamashita T, Tamura H, Zhao W, Tsuji T, Shimizu M et al. Interferon-gamma and tumor necrosis factor-alpha induce an immunoinhibitory molecule, B7-H1, via nuclear factor-kappaB activation in blasts in myelodysplastic syndromes. Blood 2010; 116: 1124–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitsiades CS, Mitsiades NS, Munshi NC, Richardson PG, Anderson KC . The role of the bone microenvironment in the pathophysiology and therapeutic management of multiple myeloma: interplay of growth factors, their receptors and stromal interactions. Eur J Cancer 2006; 42: 1564–1573.

    Article  CAS  PubMed  Google Scholar 

  16. Mahindra A, Hideshima T, Anderson KC . Multiple myeloma: biology of the disease. Blood Rev 2010; 24 (Suppl 1): S5–11.

    Article  PubMed  Google Scholar 

  17. Silvestris F, Cafforio P, Calvani N, Dammacco F . Impaired osteoblastogenesis in myeloma bone disease: role of upregulated apoptosis by cytokines and malignant plasma cells. Br J Haematol 2004; 126: 475–486.

    Article  PubMed  Google Scholar 

  18. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-gamma and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007; 110: 296–304.

    Article  CAS  PubMed  Google Scholar 

  19. Kuranda K, Berthon C, Dupont C, Wolowiec D, Leleu X, Polakowska R et al. A subpopulation of malignant CD34+CD138+B7-H1+ plasma cells is present in multiple myeloma patients. Exp Hematol 2010; 38: 124–131.

    Article  CAS  PubMed  Google Scholar 

  20. Yamashita T, Tamura H, Satoh C, Shinya E, Takahashi H, Chen L et al. Functional B7.2 and B7-H2 molecules on myeloma cells are associated with a growth advantage. Clin Cancer Res 2009; 15: 770–777.

    Article  CAS  PubMed  Google Scholar 

  21. Roecklein BA, Torok-Storb B . Functionally distinct human marrow stromal cell lines immortalized by transduction with the human papilloma virus E6/E7 genes. Blood 1995; 85: 997–1005.

    CAS  PubMed  Google Scholar 

  22. Kyle RA, Rajkumar SV . Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 2009; 23: 3–9.

    Article  CAS  PubMed  Google Scholar 

  23. Durie BG, Salmon SE . A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 1975; 36: 842–854.

    Article  CAS  PubMed  Google Scholar 

  24. Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Blade J et al. International staging system for multiple myeloma. J Clin Oncol 2005; 23: 3412–3420.

    Article  PubMed  Google Scholar 

  25. Tamura H, Dan K, Tamada K, Nakamura K, Shioi Y, Hyodo H et al. Expression of functional B7-H2 and B7.2 costimulatory molecules and their prognostic implications in de novo acute myeloid leukemia. Clin Cancer Res 2005; 11: 5708–5717.

    Article  CAS  PubMed  Google Scholar 

  26. Satoh C, Tamura H, Yamashita T, Tsuji T, Dan K, Ogata K . Aggressive characteristics of myeloblasts expressing CD7 in myelodysplastic syndromes. Leuk Res 2009; 33: 326–331.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng Y, Cai Z, Wang S, Zhang X, Qian J, Hong S et al. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 2009; 114: 3625–3628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dai Y, Landowski TH, Rosen ST, Dent P, Grant S . Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6-independent mechanism. Blood 2002; 100: 3333–3343.

    Article  CAS  PubMed  Google Scholar 

  29. Selleri C, Maciejewski JP, Sato T, Young NS . Interferon-gamma constitutively expressed in the stromal microenvironment of human marrow cultures mediates potent hematopoietic inhibition. Blood 1996; 87: 4149–4157.

    CAS  PubMed  Google Scholar 

  30. Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 2011; 34: 409–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hallett WH, Jing W, Drobyski WR, Johnson BD . Immunosuppressive effects of multiple myeloma are overcome by PD-L1 blockade. Biol Blood Marrow Transplant 2011; 17: 1133–1145.

    Article  CAS  PubMed  Google Scholar 

  32. Benson DM, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010; 116: 2286–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baliga BC, Kumar S . Role of Bcl-2 family of proteins in malignancy. Hematol Oncol 2002; 20: 63–74.

    Article  PubMed  Google Scholar 

  34. Dimopoulos MA, Barlogie B, Smith TL, Alexanian R . High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med 1991; 115: 931–935.

    Article  CAS  PubMed  Google Scholar 

  35. Terpos E, Katodritou E, Roussou M, Pouli A, Michalis E, Delimpasi S et al. High serum lactate dehydrogenase adds prognostic value to the international myeloma staging system even in the era of novel agents. Eur J Haematol 2010; 85: 114–119.

    PubMed  Google Scholar 

  36. Chatterjee M, Honemann D, Lentzsch S, Bommert K, Sers C, Herrmann P et al. In the presence of bone marrow stromal cells human multiple myeloma cells become independent of the IL-6/gp130/STAT3 pathway. Blood 2002; 100: 3311–3318.

    Article  CAS  PubMed  Google Scholar 

  37. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007; 7: 585–598.

    Article  CAS  PubMed  Google Scholar 

  38. Pope B, Brown RD, Gibson J, Yuen E, Joshua D . B7-2-positive myeloma: incidence, clinical characteristics, prognostic significance, and implications for tumor immunotherapy. Blood 2000; 96: 1274–1279.

    CAS  PubMed  Google Scholar 

  39. Bahlis NJ, King AM, Kolonias D, Carlson LM, Liu HY, Hussein MA et al. CD28-mediated regulation of multiple myeloma cell proliferation and survival. Blood 2007; 109: 5002–5010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsuo Y, Drexler HG, Harashima A, Okochi A, Hasegawa A, Kojima K et al. Induction of CD28 on the new myeloma cell line MOLP-8 with t(11;14)(q13;q32) expressing delta/lambda type immunoglobulin. Leuk Res 2004; 28: 869–877.

    Article  CAS  PubMed  Google Scholar 

  41. Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L . B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 2008; 111: 3635–3643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rettig MB, Ma HJ, Vescio RA, Pold M, Schiller G, Belson D et al. Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients. Science 1997; 276: 1851–1854.

    Article  CAS  PubMed  Google Scholar 

  43. Flies DB, Sandler BJ, Sznol M, Chen L . Blockade of the B7-H1/PD-1 pathway for cancer immunotherapy. Yale J Biol Med 2011; 84: 409–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou Q, Munger ME, Highfill SL, Tolar J, Weigel BJ, Riddle M et al. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood 2010; 116: 2484–2493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacody namics, and immunologic correlates. J Clin Oncol 2010; 28: 3167–3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (20591157).

AUTHOR CONTRIBUTIONS

H Tamura conceived and designed the study, supported clinical aspects and wrote the manuscript. MI and TY performed experiments and drafted the paper. ST, NO, AK and HH analyzed data. ES and HT supported technical aspects. HD, KT and LC supported intellectual aspects. KD provided administrative and clinical support. KO designed the study, supported clinical aspects, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Ogata.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, H., Ishibashi, M., Yamashita, T. et al. Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 27, 464–472 (2013). https://doi.org/10.1038/leu.2012.213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.213

Keywords

This article is cited by

Search

Quick links