Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors

Abstract

FMS-like tyrosine kinase 3 (FLT3) normally functions in the survival/proliferation of hematopoietic stem/progenitor cells, but its constitutive activation by internal tandem duplication (ITD) mutations correlates with a poor prognosis in AML. The development of FLT3 tyrosine kinase inhibitors (TKI) is a promising strategy, but resistance that arises during the course of treatment caused by secondary mutations within the mutated gene itself poses a significant challenge. In an effort to predict FLT3 resistance mutations that might develop in patients, we used saturation mutagenesis of FLT3/ITD followed by selection of transfected cells in FLT3 TKI. We identified F621L, A627P, F691L and Y842C mutations in FLT3/ITD that confer varying levels of resistance to FLT3 TKI. Western blotting confirmed that some FLT3 TKI were ineffective at inhibiting FLT3 autophosphorylation and signaling through MAP kinase, STAT5 and AKT in some mutants. Balb/c mice transplanted with the FLT3/ITD Y842C mutation confirmed resistance to sorafenib in vivo but not to lestaurtinib. These results indicate a growing number of FLT3 mutations that are likely to be encountered in patients. Such knowledge, combined with known remaining sensitivity to other FLT3 TKI, will be important to establish as secondary drug treatments that can be substituted when these mutants are encountered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Small D, Levenstein M, Kim E, Carrow C, Amin S, Rockwell P et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA 1994; 91: 459–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosnet O, Schiff C, Pebusque MJ, Marchetto S, Tonnelle C, Toiron Y et al. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood 1993; 82: 1110–1119.

    CAS  PubMed  Google Scholar 

  3. Lavagna-Sevenier C, Marchetto S, Birnbaum D, Rosnet O . FLT3 signaling in hematopoietic cells involves CBL, SHC and an unknown P115 as prominent tyrosine-phosphorylated substrates. Leukemia 1998; 12: 301–310.

    Article  CAS  PubMed  Google Scholar 

  4. Rosnet O, Buhring HJ, deLapeyriere O, Beslu N, Lavagna C, Marchetto S et al. Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol 1996; 95: 218–223.

    Article  CAS  PubMed  Google Scholar 

  5. Lyman SD, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 1993; 75: 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang S, Broxmeyer HE . Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp-2, grb2, and PI3 kinase. Biochem Biophys Res Commun 2000; 277: 195–199.

    Article  CAS  PubMed  Google Scholar 

  7. Brown P, Levis M, Shurtleff S, Campana D, Downing J, Small D . FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood 2005; 105: 812–820.

    Article  CAS  PubMed  Google Scholar 

  8. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng R, Levis M, Piloto O, Brown P, Baldwin BR, Gorin NC et al. FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood 2004; 103: 267–274.

    Article  CAS  PubMed  Google Scholar 

  10. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  11. Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT . Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol 2001; 113: 983–988.

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  13. Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 2004; 13: 169–178.

    Article  CAS  PubMed  Google Scholar 

  14. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012; 485: 260–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alvarado Y, Kantarjian H, Ravandi F, Luthra R, Borthakur G, Manero GG et al. FLT3 inhibitor treatment in FLT3-mutated AML is associated with development of secondary FLT3-TKD mutations. Blood 2011; 118: 1493.

    Google Scholar 

  16. Zhang W, Konopleva M, Jacamo RO, Borthakur G, Chen W, Cortes JE et al. Acquired point mutations of TKD are responsible for sorafenib resistance in FLT3-ITD mutant AML. Blood 2011, 118.

  17. Cools J, Mentens N, Furet P, Fabbro D, Clark JJ, Griffin JD et al. Prediction of resistance to small molecule FLT3 inhibitors: implications for molecularly targeted therapy of acute leukemia. Cancer Res 2004; 64: 6385–6389.

    Article  CAS  PubMed  Google Scholar 

  18. von Bubnoff N, Engh RA, Aberg E, Sanger J, Peschel C, Duyster J . FMS-like tyrosine kinase 3-internal tandem duplication tyrosine kinase inhibitors display a nonoverlapping profile of resistance mutations in vitro. Cancer Res 2009; 69: 3032–3041.

    Article  CAS  PubMed  Google Scholar 

  19. Bagrintseva K, Schwab R, Kohl TM, Schnittger S, Eichenlaub S, Ellwart JW et al. Mutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD-transformed hematopoietic cells. Blood 2004; 103: 2266–2275.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou J, Bi C, Janakakumara JV, Liu SC, Chng WJ, Tay KG et al. Enhanced activation of STAT pathways and overexpression of survivin confer resistance to FLT3 inhibitors and could be therapeutic targets in AML. Blood 2009; 113: 4052–4062.

    Article  CAS  PubMed  Google Scholar 

  21. Stolzel F, Steudel C, Oelschlagel U, Mohr B, Koch S, Ehninger G et al. Mechanisms of resistance against PKC412 in resistant FLT3-ITD positive human acute myeloid leukemia cells. Ann Hematol 89: 653–662.

    Article  PubMed  Google Scholar 

  22. Prescott H, Kantarjian H, Cortes J, Ravandi F . Emerging FMS-like tyrosine kinase 3 inhibitors for the treatment of acute myelogenous leukemia. Expert Opin Emerg Drugs 2011; 16: 407–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tse KF, Allebach J, Levis M, Smith BD, Bohmer FD, Small D . Inhibition of the transforming activity of FLT3 internal tandem duplication mutants from AML patients by a tyrosine kinase inhibitor. Leukemia 2002; 16: 2027–2036.

    Article  CAS  PubMed  Google Scholar 

  24. Azam M, Latek RR, Daley GQ . Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 2003; 112: 831–843.

    Article  CAS  PubMed  Google Scholar 

  25. Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002; 99: 3885–3891.

    Article  CAS  PubMed  Google Scholar 

  26. Tse KF, Mukherjee G, Small D . Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia 2000; 14: 1766–1776.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu X, Kim JL, Newcomb JR, Rose PE, Stover DR, Toledo LM et al. Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Structure 1999; 7: 651–661.

    Article  CAS  PubMed  Google Scholar 

  28. Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell D, Dickerson SH et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 2004; 64: 6652–6659.

    Article  CAS  PubMed  Google Scholar 

  29. Simard JR, Grutter C, Pawar V, Aust B, Wolf A, Rabiller M et al. High-throughput screening to identify inhibitors which stabilize inactive kinase conformations in p38alpha. J Am Chem Soc 2009; 131: 18478–18488.

    Article  CAS  PubMed  Google Scholar 

  30. Grebien F, Hantschel O, Wojcik J, Kaupe I, Kovacic B, Wyrzucki AM et al. Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis. Cell 2011; 147: 306–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Breitenbuecher F, Markova B, Kasper S, Carius B, Stauder T, Bohmer FD et al. A novel molecular mechanism of primary resistance to FLT3-kinase inhibitors in AML. Blood 2009; 113: 4063–4073.

    Article  CAS  PubMed  Google Scholar 

  32. el-Shami K, Stone RM, Smith BD . FLT3 inhibitors in acute myeloid leukemia. Expert Rev Hematol 2008; 1: 153–160.

    Article  CAS  PubMed  Google Scholar 

  33. Knapper S, Mills KI, Gilkes AF, Austin SJ, Walsh V, Burnett AK . The effects of lestaurtinib (CEP701) and PKC412 on primary AML blasts: the induction of cytotoxicity varies with dependence on FLT3 signaling in both FLT3-mutated and wild-type cases. Blood 2006; 108: 3494–3503.

    Article  CAS  PubMed  Google Scholar 

  34. Siendones E, Barbarroja N, Torres LA, Buendia P, Velasco F, Dorado G et al. Inhibition of Flt3-activating mutations does not prevent constitutive activation of ERK/Akt/STAT pathways in some AML cells: a possible cause for the limited effectiveness of monotherapy with small-molecule inhibitors. Hematol Oncol 2007; 25: 30–37.

    Article  CAS  PubMed  Google Scholar 

  35. Kurzrock R, Talpaz M . The molecular pathology of chronic myelogenous leukaemia. Br J Haematol 1991; 79 (Suppl 1): 34–37.

    Article  PubMed  Google Scholar 

  36. Druker BJ . Current treatment approaches for chronic myelogenous leukemia. Cancer J. 2001; 7 (Suppl 1): S14–S18.

    PubMed  Google Scholar 

  37. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  38. O′Brien SG, Guilhot F, Larson RA, Grathman I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

    Article  PubMed  Google Scholar 

  39. Apperley JF, Part I . mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol 2007; 8: 1018–1029.

    Article  CAS  PubMed  Google Scholar 

  40. O′Hare T, Deininger MW, Eide CA, Clackson T, Druker BJ . Targeting the BCR-ABL signaling pathway in therapy-resistant Philadelphia chromosome-positive leukemia. Clin Cancer Res 2011; 17: 212–221.

    Article  PubMed  Google Scholar 

  41. Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio g et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 2011; 118: 1208–1215.

    Article  CAS  PubMed  Google Scholar 

  42. Clark JJ, Cools J, Curley DP, Yu JC, Lokker NA, Giese NA et al. Variable sensitivity of FLT3 activation loop mutations to the small molecule tyrosine kinase inhibitor MLN518. Blood 2004; 104: 2867–2872.

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Gray NS . Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2006; 2: 358–364.

    Article  CAS  PubMed  Google Scholar 

  44. Cowan-Jacob SW, Fendrich G, Floersheimer A, Furet P, Liebetanz J, Rummel G et al. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr D Biol Crystallogr 2007; 63: 80–93.

    Article  CAS  PubMed  Google Scholar 

  45. Weisberg E, Roesel J, Furet P, Bold G, Imbach P, Florsheimer J et al. Antileukemic effects of novel first- and second-generation FLT3 inhibitors: structure-affinity comparison. Genes Cancer 2010; 1: 1021–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. von Bubnoff N, Rummelt C, Menzel H, Sigl M, Peschel C, Duyster J . Identification of a secondary FLT3/A848P mutation in a patient with FLT3-ITD-positive blast phase CMML and response to sunitinib and sorafenib. Leukemia 2010; 24: 1523–1525.

    Article  CAS  PubMed  Google Scholar 

  47. Kindler T, Breitenbuecher F, Kasper S, Estey E, Giles F, Feldman E et al. Identification of a novel activating mutation (Y842C) within the activation loop of FLT3 in patients with acute myeloid leukemia (AML). Blood 2005; 105: 335–340.

    Article  CAS  PubMed  Google Scholar 

  48. Jiang J, Paez JG, Lee JC, Bo R, Stone RM, DeAngelo DJ et al. Identifying and characterizing a novel activating mutation of the FLT3 tyrosine kinase in AML. Blood 2004; 104: 1855–1858.

    Article  CAS  PubMed  Google Scholar 

  49. Mony U, Jawad M, Seedhouse C, Russell N, Pallis M . Resistance to FLT3 inhibition in an in vitro model of primary AML cells with a stem cell phenotype in a defined microenvironment. Leukemia 2008; 22: 1395–1401.

    Article  CAS  PubMed  Google Scholar 

  50. Sato T, Yang X, Knapper S, White P, Smith BD, Galkin S et al. FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood 2011; 117: 3286–3293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoshimoto G, Miyamoto T, Jabbarzadeh-Tabrizi S, Iino T, Rocnik JL, Kikushige Y et al. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood 2009; 114: 5034–5043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heidel F, Solem FK, Breitenbuecher F, Lipka DB, Kasper S, Thiede MH et al. Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood 2006; 107: 293–300.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Linzhao Cheng (Johns Hopkins University) for providing us with the L3GFP vector used to visualize FLT3/ITD engraftment and to members of the lab for numerous thoughtful discussions. This work was supported by grants from the NCI (CA90770 and CA90668), Leukemia and Lymphoma Society and Giant Food Pediatric Cancer Research Fund. DS is also supported by the Kyle Haydock Professorship.

Author contributions

ABW designed experiments, performed research, analyzed data and wrote the manuscript; LL and BN performed research; ML analyzed data; PB and DL analyzed data and wrote the manuscript; DS designed experiments, supervised the project, analyzed data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Small.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, A., Nguyen, B., Li, L. et al. Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors. Leukemia 27, 48–55 (2013). https://doi.org/10.1038/leu.2012.191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.191

Keywords

This article is cited by

Search

Quick links