Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia

Abstract

Acute myeloid leukemia (AML) is a highly heterogenous disease with multiple signaling pathways contributing to its pathogenesis. A key driver of AML is the FMS-like tyrosine kinase receptor-3 (FLT3). Activating mutations in FLT3, primarily the FLT3-internal tandem duplication (FLT3-ITD), are associated with decreased progression-free and overall survival. Identification of the importance of FLT3-ITD and the FLT3 pathway in the prognosis of patients with AML has stimulated efforts to develop therapeutic inhibitors of FLT3. Although these inhibitors have shown promising antileukemic activity, they have had limited efficacy to date as single agents and may require use in combination with cytotoxic chemotherapies. Here, we review clinical and preclinical results for the clinically mature FLT3 inhibitors currently in development. We conclude that multitargeted FLT3 inhibitors may have more utility earlier in the course of disease, when in vitro evidence suggests that AML cells are less dependent on FLT3 signaling, perhaps because of upregulation of multiple other signaling pathways. More potent agents may have greater utility in relapsed and heavily pretreated patients, in whom high levels of circulating FLT3 ligand may necessitate use of an agent with a very favorable pharmacokinetic/pharmacodynamic profile. Novel combination regimens are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277–300.

    Article  PubMed  Google Scholar 

  2. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et alRefinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010; 116: 354–365.

    Article  CAS  PubMed  Google Scholar 

  3. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et alThe importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    Article  CAS  PubMed  Google Scholar 

  4. Fröhling S, Schlenk RF, Kayser S, Morhardt M, Benner A, Döhner K et alCytogenetics and age are major determinants of outcome in intensively treated acute myeloid leukemia patients older than 60 years: results from AMLSG trial AML HD98-B. Blood 2006; 108: 3280–3288.

    Article  PubMed  CAS  Google Scholar 

  5. Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et alPretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325–4336.

    Article  CAS  PubMed  Google Scholar 

  6. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A et alKaryotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 2000; 96: 4075–4083.

    Article  CAS  PubMed  Google Scholar 

  7. Frohling S, Scholl C, Gilliland DG, Levine RL . Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005; 23: 6285–6295.

    Article  CAS  PubMed  Google Scholar 

  8. Mrozek K, Bloomfield CD . Chromosome aberrations, gene mutations and expression changes, and prognosis in adult acute myeloid leukemia. Am Soc Hematol Educ Program 2006; 2006: 169–177.

    Article  Google Scholar 

  9. Mrozek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD . Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007; 109: 431–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kayser S, Schlenk RF, Londono MC, Breitenbuecher F, Wittke K, Du J et alInsertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood 2009; 114: 2386–2392.

    Article  CAS  PubMed  Google Scholar 

  11. Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T et alScreening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia 2000; 14: 796–804.

    Article  CAS  PubMed  Google Scholar 

  12. Becker H, Marcucci G, Maharry K, Radmacher MD, Mrozek K, Margeson D et alMutations of the Wilms tumor 1 gene (WT1) in older patients with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood 2010; 116: 788–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baldus CD, Tanner SM, Ruppert AS, Whitman SP, Archer KJ, Marcucci G et alBAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B Study. Blood 2003; 102: 1613–1618.

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi S . Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol 2011; 4: 36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bienz M, Ludwig M, Leibundgut EO, Mueller BU, Ratschiller D, Solenthaler M et alRisk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res 2005; 11: 1416–1424.

    Article  CAS  PubMed  Google Scholar 

  16. Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P et alExpression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996; 87: 1089–1096.

    Article  CAS  PubMed  Google Scholar 

  17. Rosnet O, Buhring HJ, Marchetto S, Rappold I, Lavagna C, Sainty D et alHuman FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia 1996; 10: 238–248.

    CAS  PubMed  Google Scholar 

  18. Weisberg E, Barrett R, Liu Q, Stone R, Gray N, Griffin JD . FLT3 inhibition and mechanisms of drug resistance in mutant FLT3-positive AML. Drug Resist Updat 2009; 12: 81–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lyman SD, Jacobsen SE . c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 1998; 91: 1101–1134.

    Article  CAS  PubMed  Google Scholar 

  20. Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan JF et alLigand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature 1994; 368: 643–648.

    Article  CAS  PubMed  Google Scholar 

  21. Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P et alSTK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA 1994; 91: 459–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR . Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 1995; 3: 147–161.

    Article  CAS  PubMed  Google Scholar 

  23. McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E et alMice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000; 95: 3489–3497.

    Article  CAS  PubMed  Google Scholar 

  24. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T . Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002; 21: 2555–2563.

    Article  CAS  PubMed  Google Scholar 

  25. Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H et alInternal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998; 12: 1333–1337.

    Article  CAS  PubMed  Google Scholar 

  26. Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F et alThe structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 2004; 13: 169–178.

    Article  CAS  PubMed  Google Scholar 

  27. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002; 99: 310–318.

    Article  CAS  PubMed  Google Scholar 

  28. Zheng R, Bailey E, Nguyen B, Yang X, Piloto O, Levis M et alFurther activation of FLT3 mutants by FLT3 ligand. Oncogene 2011; 30: 4004–4014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT . Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol 2001; 113: 983–988.

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et alActivating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  31. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et alThe presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  32. Santos FP, Jones D, Qiao W, Cortes JE, Ravandi F, Estey EE et alPrognostic value of FLT3 mutations among different cytogenetic subgroups in acute myeloid leukemia. Cancer 2011; 117: 2145–2155.

    Article  CAS  PubMed  Google Scholar 

  33. Frohling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K et alPrognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002; 100: 4372–4380.

    Article  CAS  PubMed  Google Scholar 

  34. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et alAnalysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    Article  CAS  PubMed  Google Scholar 

  35. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U et alAnalysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  36. Ravandi F, Kantarjian H, Faderl S, Garcia-Manero G, O'Brien S, Koller C et alOutcome of patients with FLT3-mutated acute myeloid leukemia in first relapse. Leuk Res 2010; 34: 752–756.

    Article  CAS  PubMed  Google Scholar 

  37. Fernandez HF, Sun Z, Yao X, Litzow MR, Luger SM, Paietta EM et alAnthracycline dose intensification in acute myeloid leukemia. N Engl J Med 2009; 361: 1249–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jin G, Matsushita H, Asai S, Tsukamoto H, Ono R, Nosaka T et alFLT3-ITD induces ara-C resistance in myeloid leukemic cells through the repression of the ENT1 expression. Biochem Biophys Res Commun 2009; 390: 1001–1006.

    Article  CAS  PubMed  Google Scholar 

  39. Sheikhha MH, Awan A, Tobal K, Liu Yin JA . Prognostic significance of FLT3 ITD and D835 mutations in AML patients. Hematol J 2003; 4: 41–46.

    Article  PubMed  Google Scholar 

  40. Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S . Prognostic relevance of FLT3-TKD mutations in AML: the combination matters–an analysis of 3082 patients. Blood 2008; 111: 2527–2537.

    Article  CAS  PubMed  Google Scholar 

  41. Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L et alMutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1909–1918.

    Article  CAS  PubMed  Google Scholar 

  42. Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK, Gale RE . FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood 2007; 110: 1262–1270.

    Article  CAS  PubMed  Google Scholar 

  43. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF et alNucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005; 106: 3733–3739.

    Article  CAS  PubMed  Google Scholar 

  44. Dohner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A et alMutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 2005; 106: 3740–3746.

    Article  PubMed  CAS  Google Scholar 

  45. Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S et alFavorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002; 100: 2717–2723.

    Article  CAS  PubMed  Google Scholar 

  46. Frohling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S et alCEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 2004; 22: 624–633.

    Article  PubMed  CAS  Google Scholar 

  47. Stirewalt DL, Kopecky KJ, Meshinchi S, Engel JH, Pogosova-Agadjanyan EL, Linsley J et alSize of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood 2006; 107: 3724–3726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD et alAbsence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 2001; 61: 7233–7239.

    CAS  PubMed  Google Scholar 

  49. Bornhäuser M, Illmer T, Schaich M, Soucek S, Ehninger G, Thiede C . Improved outcome after stem-cell transplantation in FLT3/ITD-positive AML. Blood 2007; 109: 2264–2265.

    Article  PubMed  Google Scholar 

  50. Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T et alInhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002; 1: 433–443.

    Article  CAS  PubMed  Google Scholar 

  51. Propper DJ, McDonald AC, Man A, Thavasu P, Balkwill F, Braybrooke JP et alPhase I and Pharmacokinetic Study of PKC412, an Inhibitor of Protein Kinase C. J Clin Oncol 2001; 19: 1485–1492.

    Article  CAS  PubMed  Google Scholar 

  52. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD et alPatients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005; 105: 54–60.

    Article  CAS  PubMed  Google Scholar 

  53. Fischer T, Stone RM, DeAngelo DJ, Galinsky I, Estey E, Lanza C et alPhase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol 2010; 28: 4339–4345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stone RM, Fischer T, Paquette R, Schiller G, Schiffer CA, Ehninger G et alA Phase 1b study of midostaurin (PKC412) in combination with daunorubicin and cytarabine induction and high-dose cytarabine consolidation in patients under age 61 with newly diagnosed de novo acute myeloid leukemia: overall survival of patients whose blasts have FLT3 mutations is similar to those with wild-type FLT3. Blood 2009; 114: 263.

    Article  Google Scholar 

  55. Stone RM, Dohner H, Ehninger G, Villeneuve M, Teasdale T, Virkus JD et alCALGB 10603 (RATIFY): a randomized phase III study of induction (daunorubicin/cytarabine) and consolidation (high-dose cytarabine) chemotherapy combined with midostaurin or placebo in treatment-naive patients with FLT3 mutated AML. J Clin Oncol 2011; 29: 31s.

    Google Scholar 

  56. Knapper S, Burnett AK, Littlewood T, Kell WJ, Agrawal S, Chopra R et alA phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 2006; 108: 3262–3270.

    Article  CAS  PubMed  Google Scholar 

  57. Hexner EO, Serdikoff C, Jan M, Swider CR, Robinson C, Yang S et alLestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood 2008; 111: 5663–5671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K et alSingle-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004; 103: 3669–3676.

    Article  CAS  PubMed  Google Scholar 

  59. Levis M, Pham R, Smith BD, Small D . In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood 2004; 104: 1145–1150.

    Article  CAS  PubMed  Google Scholar 

  60. Levis M, Ravandi F, Wang ES, Baer MR, Perl A, Coutre S et alResults from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 2011; 117: 3294–3301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sato T, Yang X, Knapper S, White P, Smith BD, Galkin S et alFLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood 2011; 117: 3286–3293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Knapper S, Burnett AK, Hills RK, Small D, Levis M . Lestaurtinib FLT3 inhibitory activity is modulated by concomitant azole therapy and may influence relapse risk. Blood 2009; 114: 326.

    Article  Google Scholar 

  63. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H et alBAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–7109.

    Article  CAS  PubMed  Google Scholar 

  64. Pratz KW, Cho E, Levis MJ, Karp JE, Gore SD, McDevitt M et alA pharmacodynamic study of sorafenib in patients with relapsed and refractory acute leukemias. Leukemia 2010; 24: 1437–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee SH, Paietta E, Racevskis J, Wiernik PH . Complete resolution of leukemia cutis with sorafenib in an acute myeloid leukemia patient with FLT3-ITD mutation. Am J Hematol 2009; 84: 701–702.

    Article  PubMed  Google Scholar 

  66. Safaian NN, Czibere A, Bruns I, Fenk R, Reinecke P, Dienst A et alSorafenib (Nexavar) induces molecular remission and regression of extramedullary disease in a patient with FLT3-ITD+ acute myeloid leukemia. Leuk Res 2009; 33: 348–350.

    Article  CAS  PubMed  Google Scholar 

  67. Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A et alCompassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 2009; 113: 6567–6571.

    Article  CAS  PubMed  Google Scholar 

  68. Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY et alPhase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol 2010; 28: 1856–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Serve H, Wagner R, Sauerland C, Brunnberg U, Krug U, Schaich M et alSorafenib in combination with standard induction and consolidation therapy in elderly AML patients: results from a randomized, placebo-controlled phase II trial. Blood 2010; 116: 151.

    Article  Google Scholar 

  70. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B et alAC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 2009; 114: 2984–2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kampa-Schittenhelm KM, Trikha M, Schlenk RF, Doehner H, Doehner K, Heinrich MC et alAC220, a potent second generation class I/III tyrosine kinase inhibitor, displays a distinct inhibition profile on mutant-FLT3 as well as -KIT isoforms. Blood 2010; 116: 132.

    Article  Google Scholar 

  72. James J, Pratz K, Stine A, Apuy JL, Insko DE, Armstrong RC et alClinical pharmacokinetics and FLT3 phosphorylation of AC220, a highly potent and selective inhibitor of FLT3. Blood 2008; 112: 912.

    Google Scholar 

  73. Trikha M, Cortes J, Foran J, Ghirdaladze D, DeVetten M, Zodelava M et alAC220, a potent, selective, second-generation FLT3 receptor tyrosine kinase inhibitor in a first-in-human phase 1 AML study. Haematologica 2010; 96: 460–461.

    Google Scholar 

  74. Cortes J, Perl A, Smith C, Kovacsovics T, Dombret H, Döhner H et alA phase II open-label, AC220 monotherapy efficacy (ACE) study in patients with acute myeloid leukemia (AML) with FLT3-ITD activating mutations: Interim results. Haematologica 2011; 96: 426.

    Google Scholar 

  75. Kelly LM, Yu JC, Boulton CL, Apatira M, Li J, Sullivan CM et alCT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 2002; 1: 421–432.

    Article  CAS  PubMed  Google Scholar 

  76. DeAngelo DJ, Stone RM, Heaney ML, Nimer SD, Paquette RL, Klisovic RB et alPhase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood 2006; 108: 3674–3681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schittenhelm MM, Kampa KM, Yee KW, Heinrich MC . The FLT3 inhibitor tandutinib (formerly MLN518) has sequence-independent synergistic effects with cytarabine and daunorubicin. Cell Cycle 2009; 8: 2621–2630.

    Article  CAS  PubMed  Google Scholar 

  78. Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa T, Levis M . FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 2010; 115: 1425–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC . Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2002; 100: 2393–2398.

    Article  CAS  PubMed  Google Scholar 

  80. Shih LY, Huang CF, Wu JH, Lin TL, Dunn P, Wang PN et alInternal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002; 100: 2387–2392.

    Article  CAS  PubMed  Google Scholar 

  81. Levis M, Brown P, Smith BD, Stine A, Pham R, Stone R et alPlasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood 2006; 108: 3477–3483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weisberg E, Ray A, Nelson E, Adamia S, Barrett R, Sattler M et alReversible resistance induced by FLT3 inhibition: a novel resistance mechanism in mutant FLT3-expressing cells. PLoS ONE 2011; 6: e25351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cools J, Mentens N, Furet P, Fabbro D, Clark JJ, Griffin JD et alPrediction of resistance to small molecule FLT3 inhibitors. Cancer Res 2004; 64: 6385–6389.

    Article  CAS  PubMed  Google Scholar 

  84. Lyman SD, Seaberg M, Hanna R, Zappone J, Brasel K, Abkowitz JL et alPlasma/serum levels of flt3 ligand are low in normal individuals and highly elevated in patients with Fanconi anemia and acquired aplastic anemia. Blood 1995; 86: 4091–4096.

    Article  CAS  PubMed  Google Scholar 

  85. Wodnar-Filipowicz A, Lyman SD, Gratwohl A, Tichelli A, Speck B, Nissen C . Flt3 ligand level reflects hematopoietic progenitor cell function in aplastic anemia and chemotherapy-induced bone marrow aplasia. Blood 1996; 88: 4493–4499.

    Article  CAS  PubMed  Google Scholar 

  86. Bojko P, Pawloski D, Stellberg W, Schroder JK, Seeber S . Flt3 ligand and thrombopoietin serum levels during peripheral blood stem cell mobilization with chemotherapy and recombinant human glycosylated granulocyte colony-stimulating factor (rhu-G-CSF, lenograstim) and after high-dose chemotherapy. Ann Hematol 2002; 81: 522–528.

    Article  CAS  PubMed  Google Scholar 

  87. Youssoufian H, Rowinsky EK, Tonra J, Li Y, Targeting FMS . related tyrosine kinase receptor 3 with the human immunoglobulin G1 monoclonal antibody IMC-EB10. Cancer 2010; 116: 1013–1017.

    Article  CAS  PubMed  Google Scholar 

  88. Bagrintseva K, Schwab R, Kohl TM, Schnittger S, Eichenlaub S, Ellwart JW et alMutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD-transformed hematopoietic cells. Blood 2004; 103: 2266–2275.

    Article  CAS  PubMed  Google Scholar 

  89. Li Y, Zhu Z . Monoclonal antibody-based therapeutics for leukemia. Expert Opin Biol Ther 2007; 7: 319–330.

    Article  CAS  PubMed  Google Scholar 

  90. Li Y, Zhu Z . FLT3 antibody-based therapeutics for leukemia therapy. Int J Hematol 2005; 82: 108–114.

    Article  CAS  PubMed  Google Scholar 

  91. Williams B, Atkins A, Zhang H, Lu D, Jimenez X, Li H et alCell-based selection of internalizing fully human antagonistic antibodies directed against FLT3 for suppression of leukemia cell growth. Leukemia 2005; 19: 1432–1438.

    Article  CAS  PubMed  Google Scholar 

  92. Li Y, Li H, Wang MN, Lu D, Bassi R, Wu Y et alSuppression of leukemia expressing wild-type or ITD-mutant FLT3 receptor by a fully human anti-FLT3 neutralizing antibody. Blood 2004; 104: 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  93. Piloto O, Levis M, Huso D, Li Y, Li H, Wang MN et alInhibitory anti-FLT3 antibodies are capable of mediating antibody-dependent cell-mediated cytotoxicity and reducing engraftment of acute myelogenous leukemia blasts in nonobese diabetic/severe combined immunodeficient mice. Cancer Res 2005; 65: 1514–1522.

    Article  CAS  PubMed  Google Scholar 

  94. Piloto O, Wright M, Brown P, Kim KT, Levis M, Small D . Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood 2007; 109: 1643–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF et alDevelopment of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003; 21: 778–784.

    Article  CAS  PubMed  Google Scholar 

  96. Ju S, Xue Z, Ju S, Ge Y, Xie W, Zhu H et alAnti-human FLT3 monoclonal antibody that inhibits proliferation of monocytic leukemia cell line SHI-1. Hybridoma (Larchmt) 2011; 30: 61–67.

    Article  CAS  Google Scholar 

  97. Hofmann M, Grosse-Hovest L, Nubling T, Pyz E, Bamberg ML, Aulwurm S et alGeneration, selection and preclinical characterization of an Fc-optimized FLT3 antibody for the treatment of myeloid leukemia. Leukemia 2012; e-pub ahead of print 6 January 2012; doi:10.1038/leu.2011.372.

    Article  CAS  PubMed  Google Scholar 

  98. Yee KW, Schittenhelm M, O'Farrell AM, Town AR, McGreevey L, Bainbridge T et alSynergistic effect of SU11248 with cytarabine or daunorubicin on FLT3 ITD-positive leukemic cells. Blood 2004; 104: 4202–4209.

    Article  CAS  PubMed  Google Scholar 

  99. Pratz K, Levis M . Incorporating FLT3 inhibitors into acute myeloid leukemia treatment regimens. Leuk Lymphoma 2008; 49: 852–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fukuda S, Broxmeyer HE, Pelus LM . Flt3 ligand and the Flt3 receptor regulate hematopoietic cell migration by modulating the SDF-1α (CXCL12)/CXCR4 axis. Blood 2005; 105: 3117–3126.

    Article  CAS  PubMed  Google Scholar 

  101. Tavor S, Petit I, Porozov S, Avigdor A, Dar A, Leider-Trejo L et alCXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res 2004; 64: 2817–2824.

    Article  CAS  PubMed  Google Scholar 

  102. Rombouts EJC, Pavic B, Löwenberg B, Ploemacher RE . Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 2004; 104: 550–557.

    Article  CAS  PubMed  Google Scholar 

  103. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK et alChemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 2009; 113: 6206–6214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Juarez J, Dela Pena A, Baraz R, Hewson J, Khoo M, Cisterne A et alCXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. Leukemia 2007; 21: 1249–1257.

    Article  CAS  PubMed  Google Scholar 

  105. Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O et alTargeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 2009; 113: 6215–6224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Miranda MB, McGuire TF, Johnson DE . Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia 2002; 16: 683–692.

    Article  CAS  PubMed  Google Scholar 

  107. Takahashi S . Inhibition of the MEK/MAPK signal transduction pathway strongly impairs the growth of Flt3-ITD cells. Am J Hematol 2006; 81: 154–155.

    Article  PubMed  Google Scholar 

  108. Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D et alTherapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 2001; 108: 851–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Radomska HS, Basseres DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y et alBlock of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 2006; 203: 371–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lunghi P, Costanzo A, Salvatore L, Noguera N, Mazzera L, Tabilio A et alMEK1 inhibition sensitizes primary acute myelogenous leukemia to arsenic trioxide-induced apoptosis. Blood 2006; 107: 4549–4553.

    Article  CAS  PubMed  Google Scholar 

  111. Takahashi S, Harigae H, Yokoyama H, Ishikawa I, Abe S, Imaizumi M et alSynergistic effect of arsenic trioxide and flt3 inhibition on cells with flt3 internal tandem duplication. Int J Hematol 2006; 84: 256–261.

    Article  CAS  PubMed  Google Scholar 

  112. Douer D, Tallman MS . Arsenic trioxide: new clinical experience with an old medication in hematologic malignancies. J Clin Oncol 2005; 23: 2396–2410.

    Article  CAS  PubMed  Google Scholar 

  113. Minami Y, Kiyoi H, Yamamoto Y, Yamamoto K, Ueda R, Saito H et alSelective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. Leukemia 2002; 16: 1535–1540.

    Article  CAS  PubMed  Google Scholar 

  114. Yao Q, Nishiuchi R, Li Q, Kumar AR, Hudson WA, Kersey JH . FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin Cancer Res 2003; 9: 4483–4493.

    CAS  PubMed  Google Scholar 

  115. George P, Bali P, Cohen P, Tao J, Guo F, Sigua C et alCotreatment with 17-allylamino-demethoxygeldanamycin and FLT-3 kinase inhibitor PKC412 is highly effective against human acute myelogenous leukemia cells with mutant FLT-3. Cancer Res 2004; 64: 3645–3652.

    Article  CAS  PubMed  Google Scholar 

  116. Yao Q, Nishiuchi R, Kitamura T, Kersey JH . Human leukemias with mutated FLT3 kinase are synergistically sensitive to FLT3 and Hsp90 inhibitors: the key role of the STAT5 signal transduction pathway. Leukemia 2005; 19: 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  117. Caligiuri MA, Strout MP, Lawrence D, Arthur DC, Baer MR, Yu F et alRearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res 1998; 58: 55–59.

    CAS  PubMed  Google Scholar 

  118. Munoz L, Nomdedeu JF, Villamor N, Guardia R, Colomer D, Ribera JM et alAcute myeloid leukemia with MLL rearrangements: clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells. Leukemia 2003; 17: 76–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for medical editorial assistance was provided by Novartis Pharmaceuticals. We thank Erinn Goldman, PhD, for medical editorial assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Giles.

Ethics declarations

Competing interests

Dr Giles has received research support and has served as a consultant for Novartis Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swords, R., Freeman, C. & Giles, F. Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia. Leukemia 26, 2176–2185 (2012). https://doi.org/10.1038/leu.2012.114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.114

Keywords

This article is cited by

Search

Quick links