Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Monoubiquitinated Fanconi anemia D2 (FANCD2-Ub) is required for BCR-ABL1 kinase-induced leukemogenesis

Abstract

Fanconi D2 (FANCD2) is monoubiquitinated on K561 (FANCD2-Ub) in response to DNA double-strand breaks (DSBs) to stimulate repair of these potentially lethal DNA lesions. FANCD2-Ub was upregulated in CD34+ chronic myeloid leukemia (CML) cells and in BCR-ABL1 kinase-positive cell lines in response to elevated levels of reactive oxygen species (ROS) and DNA cross-linking agent mitomycin C. Downregulation of FANCD2 and inhibition of FANCD2-Ub reduced the clonogenic potential of CD34+ CML cells and delayed BCR-ABL1 leukemogenesis in mice. Retarded proliferation of BCR-ABL1 positive FANCD2−/− leukemia cells could be rescued by FANCD2 expression. BCR-ABL1 positive FANCD2−/− cells accumulated more ROS-induced DSBs in comparison with BCR-ABL1 positive FANCD2+/+ cells. Antioxidants diminished the number of DSBs and enhanced proliferation of BCR-ABL1 positive FANCD2−/− cells. Expression of wild-type FANCD2 and FANCD2(S222A) phosphorylation-defective mutant (deficient in stimulation of intra-S phase checkpoint, but proficient in DSB repair), but not FANCD2(K561R) monoubiquitination-defective mutant (proficient in stimulation of intra-S phase checkpoint, but deficient in DSB repair) reduced the number of DSBs and facilitated proliferation of BCR-ABL1 positive FANCD2−/− cells. We hypothesize that FANCD2-Ub has an important role in BCR-ABL1 leukemogenesis because of its ability to facilitate the repair of numerous ROS-induced DSBs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jones D, Luthra R, Cortes J, Thomas D, O'Brien S, Bueso-Ramos C et al. BCR-ABL fusion transcript types and levels and their interaction with secondary genetic changes in determining the phenotype of Philadelphia chromosome-positive leukemias. Blood 2008; 112: 5190–5192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cramer K, Nieborowska-Skorska M, Koptyra M, Slupianek A, Penserga ET, Eaves CJ et al. BCR/ABL and other kinases from chronic myeloproliferative disorders stimulate single-strand annealing, an unfaithful DNA double-strand break repair. Cancer Res 2008; 68: 6884–6888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 2006; 108: 319–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E et al. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 2004; 104: 3746–3753.

    Article  CAS  PubMed  Google Scholar 

  5. Klemm L, Duy C, Iacobucci I, Kuchen S, von Levetzow G, Feldhahn N et al. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell 2009; 16: 232–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feldhahn N, Henke N, Melchior K, Duy C, Soh BN, Klein F et al. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. J Exp Med 2007; 204: 1157–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Radfar A, Unnikrishnan I, Lee HW, DePinho RA, Rosenberg N . p19(Arf) induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation. Proc Natl Acad Sci USA 1998; 95: 13194–13199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang PY, Young F, Chen CY, Stevens BM, Neering SJ, Rossi RM et al. The biologic properties of leukemias arising from BCR/ABL-mediated transformation vary as a function of developmental origin and activity of the p19ARF gene. Blood 2008; 112: 4184–4192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slupianek A, Nowicki MO, Koptyra M, Skorski T . BCR/ABL modifies the kinetics and fidelity of DNA double-strand breaks repair in hematopoietic cells. DNA Repair (Amst) 2006; 5: 243–250.

    Article  CAS  Google Scholar 

  10. Fernandes MS, Reddy MM, Gonneville JR, DeRoo SC, Podar K, Griffin JD et al. BCR-ABL promotes the frequency of mutagenic single-strand annealing DNA repair. Blood 2009; 114: 1813–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brady N, Gaymes TJ, Cheung M, Mufti GJ, Rassool FV . Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins. Cancer Res 2003; 63: 1798–1805.

    CAS  PubMed  Google Scholar 

  12. Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D'Andrea AD et al. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci USA 2005; 102: 1110–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adamo A, Collis SJ, Adelman CA, Silva N, Horejsi Z, Ward JD et al. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol Cell 2010; 39: 25–35.

    Article  CAS  PubMed  Google Scholar 

  14. Lundberg R, Mavinakere M, Campbell C . Deficient DNA end joining activity in extracts from fanconi anemia fibroblasts. J Biol Chem 2001; 276: 9543–9549.

    Article  CAS  PubMed  Google Scholar 

  15. D'Andrea AD, Grompe M . The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 2003; 3: 23–34.

    Article  CAS  PubMed  Google Scholar 

  16. Moldovan GL, D'Andrea AD . How the fanconi anemia pathway guards the genome. Annu Rev Genet 2009; 43: 223–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001; 7: 249–262.

    Article  CAS  PubMed  Google Scholar 

  18. Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, Kim ST et al. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 2002; 109: 459–472.

    Article  CAS  PubMed  Google Scholar 

  19. Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald III ER, Hurov KE, Luo J et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 2007; 129: 289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishiai M, Kitao H, Smogorzewska A, Tomida J, Kinomura A, Uchida E et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat Struct Mol Biol 2008; 15: 1138–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rothfuss A, Grompe M . Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway. Mol Cell Biol 2004; 24: 123–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alpi AF, Patel KJ . Monoubiquitylation in the Fanconi anemia DNA damage response pathway. DNA Repair (Amst) 2009; 8: 430–435.

    Article  CAS  Google Scholar 

  23. Alter BP . Cancer in Fanconi anemia, 1927–2001. Cancer 2003; 97: 425–440.

    Article  PubMed  Google Scholar 

  24. Kutler DI, Singh B, Satagopan J, Batish SD, Berwick M, Giampietro PF et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 2003; 101: 1249–1256.

    Article  CAS  PubMed  Google Scholar 

  25. Rosenberg PS, Greene MH, Alter BP . Cancer incidence in persons with Fanconi anemia. Blood 2003; 101: 822–826.

    Article  CAS  PubMed  Google Scholar 

  26. Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001; 7: 249–262.

    Article  CAS  PubMed  Google Scholar 

  27. Rink L, Slupianek A, Stoklosa T, Nieborowska-Skorska M, Urbanska K, Seferynska I et al. Enhanced phosphorylation of Nbs1, a member of DNA repair/checkpoint complex Mre11-RAD50-Nbs1, can be targeted to increase the efficacy of imatinib mesylate against BCR/ABL-positive leukemia cells. Blood 2007; 110: 651–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Houghtaling S, Timmers C, Noll M, Finegold MJ, Jones SN, Meyn MS et al. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev 2003; 17: 2021–2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. Embo J 1997; 16: 6151–6161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  PubMed  Google Scholar 

  31. Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, Kim ST et al. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 2002; 109: 459–472.

    Article  CAS  PubMed  Google Scholar 

  32. Canitrot Y, Falinski R, Louat T, Laurent G, Cazaux C, Hoffmann JS et al. p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation. Blood 2003; 102: 2632–2637.

    Article  CAS  PubMed  Google Scholar 

  33. Singh NP, McCoy MT, Tice RR, Schneider EL . A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988; 175: 184–191.

    Article  CAS  PubMed  Google Scholar 

  34. Majsterek I, Blasiak J, Mlynarski W, Hoser G, Skorski T . Does the bcr/abl-mediated increase in the efficacy of DNA repair play a role in the drug resistance of cancer cells? Cell Biol Int 2002; 26: 363–370.

    Article  CAS  PubMed  Google Scholar 

  35. Montes de Oca R, Andreassen PR, Margossian SP, Gregory RC, Taniguchi T, Wang X et al. Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. Blood 2005; 105: 1003–1009.

    Article  PubMed  Google Scholar 

  36. Landais I, Sobeck A, Stone S, LaChapelle A, Hoatlin ME . A novel cell-free screen identifies a potent inhibitor of the Fanconi anemia pathway. Int J Cancer 2009; 124: 783–792.

    Article  CAS  PubMed  Google Scholar 

  37. Slupianek A, Schmutte C, Tombline G, Nieborowska-Skorska M, Hoser G, Nowicki MO et al. BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance. Mol Cell 2001; 8: 795–806.

    Article  CAS  PubMed  Google Scholar 

  38. Finkel T . Oxidant signals and oxidative stress. Curr Opin Cell Biol 2003; 15: 247–254.

    Article  CAS  PubMed  Google Scholar 

  39. Martindale JL, Holbrook NJ . Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 2002; 192: 1–15.

    Article  CAS  PubMed  Google Scholar 

  40. Wajapeyee N, Wang SZ, Serra RW, Solomon PD, Nagarajan A, Zhu X et al. Senescence induction in human fibroblasts and hematopoietic progenitors by leukemogenic fusion proteins. Blood 2010; 115: 5057–5060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang QS, Marquez-Loza L, Eaton L, Duncan AW, Goldman DC, Anur P et al. Fancd2−/− mice have hematopoietic defects that can be partially corrected by resveratrol. Blood 2010; 116: 5140–5148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pang Q, Andreassen PR . Fanconi anemia proteins and endogenous stresses. Mutat Res 2009; 668: 42–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Futaki M, Igarashi T, Watanabe S, Kajigaya S, Tatsuguchi A, Wang J et al. The FANCG Fanconi anemia protein interacts with CYP2E1: possible role in protection against oxidative DNA damage. Carcinogenesis 2002; 23: 67–72.

    Article  CAS  PubMed  Google Scholar 

  44. Park SJ, Ciccone SL, Beck BD, Hwang B, Freie B, Clapp DW et al. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins. J Biol Chem 2004; 279: 30053–30059.

    Article  CAS  PubMed  Google Scholar 

  45. Valeri A, Alonso-Ferrero ME, Rio P, Pujol MR, Casado JA, Perez L et al. Bcr/Abl interferes with the Fanconi anemia/BRCA pathway: implications in the chromosomal instability of chronic myeloid leukemia cells. PLoS One 2010; 5: e15525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nieborowska-Skorska M, Stoklosa T, Datta M, Czechowska A, Rink L, Slupianek A et al. ATR-Chk1 axis protects BCR/ABL leukemia cells from the lethal effect of DNA double-strand breaks. Cell Cycle 2006; 5: 994–1000.

    Article  CAS  PubMed  Google Scholar 

  47. Vinciguerra P, Godinho SA, Parmar K, Pellman D, D'Andrea AD . Cytokinesis failure occurs in Fanconi anemia pathway-deficient murine and human bone marrow hematopoietic cells. J Clin Invest 2010; 120: 3834–3842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Howlett NG, Taniguchi T, Durkin SG, D'Andrea AD, Glover TW . The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet 2005; 14: 693–701.

    Article  CAS  PubMed  Google Scholar 

  49. Keller G, Brassat U, Braig M, Heim D, Wege H, Brummendorf TH . Telomeres and telomerase in chronic myeloid leukaemia: impact for pathogenesis, disease progression and targeted therapy. Hematol Oncol 2009; 27: 123–129.

    Article  CAS  PubMed  Google Scholar 

  50. Callen E, Samper E, Ramirez MJ, Creus A, Marcos R, Ortega JJ et al. Breaks at telomeres and TRF2-independent end fusions in Fanconi anemia. Hum Mol Genet 2002; 11: 439–444.

    Article  CAS  PubMed  Google Scholar 

  51. Li J, Du W, Maynard S, Andreassen PR, Pang Q . Oxidative stress-specific interaction between FANCD2 and FOXO3a. Blood 1545; 115: 1545–1548.

    Article  Google Scholar 

  52. Ghaffari S, Jagani Z, Kitidis C, Lodish HF, Khosravi-Far R . Cytokines and BCR-ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor. Proc Natl Acad Sci USA 2003; 100: 6523–6528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ikeda H, Matsushita M, Waisfisz Q, Kinoshita A, Oostra AB, Nieuwint AW et al. Genetic reversion in an acute myelogenous leukemia cell line from a Fanconi anemia patient with biallelic mutations in BRCA2. Cancer Res 2003; 63: 2688–2694.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Alan D D'Andrea (Dana-Farber Cancer Institute, Boston, MA, USA) for providing FANCD2 expression plasmids and FANCD2 cell lines, and Dr Marcus Grompe (Oregon Health and Science University, Portland, OR, USA) for the knockout mice. We also thank Elisabeth Bolton for careful reading of the manuscript. This study was supported by NIH/NCI CA89052 and CA123014 (T Skorski), by 1M19/NK1W/2009 and 1M19/NK1D/2009 from Medical University of Warsaw (T Stoklosa and E Glodkowska-Mrowka) and by N N401 039037 from Polish Ministry of Education and Science (G Hoser). T Stoklosa was the recipient of YY 2009 fellowship from International Union Against Cancer. We thank E Bolton for critical reading of the manuscript and K Piwocka and M Kucia-Kobialko for their help with nucleofection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Skorski.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koptyra, M., Stoklosa, T., Hoser, G. et al. Monoubiquitinated Fanconi anemia D2 (FANCD2-Ub) is required for BCR-ABL1 kinase-induced leukemogenesis. Leukemia 25, 1259–1267 (2011). https://doi.org/10.1038/leu.2011.91

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.91

Keywords

This article is cited by

Search

Quick links