Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Src inhibitors, PP2 and dasatinib, increase retinoic acid-induced association of Lyn and c-Raf (S259) and enhance MAPK-dependent differentiation of myeloid leukemia cells

Abstract

All-trans-retinoic-acid (ATRA)-induced differentiation of human myeloid leukemia cells is characterized by persistent mitogen-activated protein kinase (MAPK) signaling. Fragmentary data suggests Src family kinase (SFK) inhibitors enhance differentiation, and thus have potential therapeutic value. The present study shows that SFK inhibitors PP2 and dasatinib enhance aspects of MAPK signaling and regulate a panel of differentiation markers, including CD11b and p47phox. HL-60 and NB4 myeloid leukemia cells show accelerated ATRA-induced G1/0 arrest/differentiation with inhibitor co-treatment. We also identified components of a Lyn- and c-Raf-containing MAPK signaling complex augmented by the inhibitors. PP2 and dasatinib increased the ATRA-induced expression of Lyn and c-Raf (total and c-RafpS259) and their interaction. The Lyn-associated serine/threonine kinase, casein kinase II (CK2), also complexed with c-Raf and c-RafpS259, and the kinase suppressor of Ras 1 (KSR1) scaffold protein bound c-Raf, Lyn and extracellular signal-regulated kinase (ERK). c-Raf/ERK association was increased by the inhibitors, which is significant as ERK may cause c-Raf C-terminal domain (CTD) phosphorylation in a putative feedback mechanism. Consistent with this, inhibitor treatment caused more CTD phosphorylation. Lyn knockdown decreased c-Raf CTD and S259 phosphorylation. This is the first evidence suggesting SFK inhibitors enhance ATRA-induced differentiation through a possible feedback loop involving KSR1-scaffolded c-Raf and ERK complexed with Lyn and CK2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kim MP, Park SI, Kopetz S, Gallick GE . Src family kinases as mediators of endothelial permeability: effects on inflammation and metastasis. Cell Tissue Res 2009; 335: 249–259.

    Article  CAS  PubMed  Google Scholar 

  2. Danhauser-Riedl S, Warmuth M, Druker BJ, Emmerich B, Hallek M . Activation of Src kinases p53/56lyn and p59hck by p210bcr/abl in myeloid cells. Cancer Res 1996; 56: 3589–3596.

    CAS  PubMed  Google Scholar 

  3. Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 2002; 21: 5766–5774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dos Santos C, Demur C, Bardet V, Prade-Houdellier N, Payrastre B, Recher C . A critical role for Lyn in acute myeloid leukemia. Blood 2008; 111: 2269–2279.

    Article  CAS  PubMed  Google Scholar 

  5. Kropf PL, Wang L, Zang Y, Redner RL, Johnson DE . Dasatinib promotes ATRA-induced differentiation of AML cells. Leukemia 2010; 24: 663–665.

    Article  CAS  PubMed  Google Scholar 

  6. Small D . FLT3 mutations: biology and treatment. Hematology Am Soc Hematol Educ Program 2006; 1: 178–184.

    Article  Google Scholar 

  7. Okamoto M, Hayakawa F, Miyata Y, Watamoto K, Emi N, Abe A et al. Lyn is an important component of the signal transduction pathway specific to FLT3/ITD and can be a therapeutic target in the treatment of AML with FLT3/ITD. Leukemia 2007; 21: 403–410.

    Article  CAS  PubMed  Google Scholar 

  8. Robinson LJ, Xue J, Corey SJ . Src family tyrosine kinases are activated by Flt3 and are involved in the proliferative effects of leukemia-associated Flt3 mutations. Exp Hematol 2005; 33: 469–479.

    Article  CAS  PubMed  Google Scholar 

  9. Wu J, Meng F, Lu H, Kong L, Bornmann W, Peng Z et al. Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib-resistant chronic myelogenous leukemia cells. Blood 2008; 111: 3821–3829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guerrouahen BS, Futami M, Vaklavas C, Kanerva J, Whichard ZL, Nwawka K et al. Dasatinib inhibits the growth of molecularly heterogeneous myeloid leukemias. Clin Cancer Res 2010; 16: 1149–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Steinberg M . Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther 2007; 29: 2289–2308.

    Article  CAS  PubMed  Google Scholar 

  12. Papageorgiou SG, Pappa V, Economopoulou C, Tsirigotis P, Konsioti F, Ionnidou ED et al. Dasatinib induces long-term remission in imatinib-resistant Philadelphia chromosome-positive acute megakaryoblastic leukemia but fails to prevent development of central nervous system progression. Leuk Res 2010; 34: e254–e256.

    Article  PubMed  Google Scholar 

  13. Stein B, Smith BD . Treatment options for patients with chronic myeloid leukemia who are resistant to or unable to tolerate imatinib. Clin Ther 2010; 32: 804–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klamova H, Faber E, Zackova D, Markova M, Voglova J, Cmunt E et al. Dasatinib in imatinib-resistant or -intolerant CML patients: data from the clinical practice of 6 hematological centers in the Czech Republic. Neoplasma 2010; 57: 355–359.

    CAS  PubMed  Google Scholar 

  15. Miranda MB, Redner RL, Johnson DE . Inhibition of Src family kinases enhances retinoic acid induced gene expression and myeloid differentiation. Mol Cancer Ther 2007; 6 (12 Part 1): 3081–3090.

    Article  CAS  PubMed  Google Scholar 

  16. Katagiri K, Yokoyama KK, Yamamoto T, Omura S, Irie S, Katagiri T . Lyn and Fgr protein-tyrosine kinases prevent apoptosis during retinoic acid-induced granulocytic differentiation of HL-60 cells. J Biol Chem 1996; 271: 11557–11562.

    Article  CAS  PubMed  Google Scholar 

  17. Notario V, Gutkind JS, Imaizumi M, Katamine S, Robbins KC . Expression of the fgr protooncogene product as a function of myelomonocytic cell maturation. J Cell Biol 1989; 109 (6 Part 1): 3129–3136.

    Article  CAS  PubMed  Google Scholar 

  18. Lee M, Kim JY, Anderson WB . Src tyrosine kinase inhibitor PP2 markedly enhances Ras-independent activation of Raf-1 protein kinase by phorbol myristate acetate and H2O2. J Biol Chem 2004; 279: 48692–48701.

    Article  CAS  PubMed  Google Scholar 

  19. Konig H, Copland M, Chu S, Jove R, Holyoake TL, Bhatia R . Effects of dasatinib on SRC kinase activity and downstream intracellular signaling in primitive chronic myelogenous leukemia hematopoietic cells. Cancer Res 2008; 68: 9624–9633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen M, Yen A . c-Cbl interacts with CD38 and promotes retinoic acid-induced differentiation and G0 arrest of human myeloblastic leukemia cells. Cancer Res 2008; 68: 8761–8769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yen A, Roberson MS, Varvayanis S, Lee AT . Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res 1998; 58: 3163–3172.

    CAS  PubMed  Google Scholar 

  22. Wang J, Yen A . A MAPK-positive feedback mechanism for BLR1 signaling propels retinoic acid-triggered differentiation and cell cycle arrest. J Biol Chem 2008; 283: 4375–4386.

    Article  CAS  PubMed  Google Scholar 

  23. Katagiri K, Katagiri T, Koyama Y, Morikawa M, Yamamoto T, Yoshida T . Expression of src family genes during monocytic differentiation of HL-60 cells. J Immunol 1991; 146: 701–707.

    CAS  PubMed  Google Scholar 

  24. Congleton J, Jiang H, Malavasi F, Lin H, Yen A . ATRA-induced HL-60 myeloid leukemia cell differentiation depends on the CD38 cytosolic tail needed for membrane localization, but CD38 enzymatic activity is unnecessary. Exp Cell Res 2011; 317: 910–919.

    Article  CAS  PubMed  Google Scholar 

  25. Smith J, Bunaciu RP, Reiterer G, Coder D, George T, Asaly M et al. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells. Exp Cell Res 2009; 315: 2241–2248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yen A, Williams M, Platko JD, Der C, Hisaka M . Expression of activated RAF accelerates cell differentiation and RB protein down-regulation but not hypophosphorylation. Eur J Cell Biol 1994; 65: 103–113.

    CAS  PubMed  Google Scholar 

  27. Zafrullah M, Yin X, Haimovitz-Friedman A, Fuks Z, Kolesnick R . Kinase suppressor of Ras transphosphorylates c-Raf-1. Biochem Biophys Res Commun 2009; 390: 434–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ritt DA, Zhou M, Conrads TP, Veenstra TD, Copeland TD, Morrison DK . CK2 is a component of the KSR1 scaffold complex that contributes to Raf kinase activation. Curr Biol 2007; 17: 179–184.

    Article  CAS  PubMed  Google Scholar 

  29. Hagemann C, Kalmes A, Wixler V, Wixler L, Schuster T, Rapp UR . The regulatory subunit of protein kinase CK2 is a specific A-Raf activator. FEBS Lett 1997; 403: 200–202.

    Article  CAS  PubMed  Google Scholar 

  30. McKay MM, Ritt DA, Morrison DK . Signaling dynamics of the KSR1 scaffold complex. Proc Natl Acad Sci USA 2009; 106: 11022–11027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Donella-Deana A, Cesaro L, Sarno S, Brunati AM, Ruzzene M, Pinna LA . Autocatalytic tyrosine-phosphorylation of protein kinase CK2 alpha and alpha’ subunits: implication of Tyr182. Biochem J 2001; 357 (Part 2): 563–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Donella-Deana A, Cesaro L, Sarno S, Ruzzene M, Brunati AM, Marin O et al. Tyrosine phosphorylation of protein kinase CK2 by Src-related tyrosine kinases correlates with increased catalytic activity. Biochem J 2003; 372 (Part 3): 841–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kolch W . Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 2005; 6: 827–837.

    Article  CAS  PubMed  Google Scholar 

  34. Filbert EL, Nguyen A, Markiewicz MA, Fowlkes BJ, Huang YH, Shaw AS . Kinase suppressor of Ras 1 is required for full ERK activation in thymocytes but not for thymocyte selection. Eur J Immunol 2010; 40: 3226–3234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Razidlo GL, Kortum RL, Haferbier JL, Lewis RE . Phosphorylation regulates KSR1 stability, ERK activation, and cell proliferation. J Biol Chem 2004; 279: 47808–47814.

    Article  CAS  PubMed  Google Scholar 

  36. Kortum RL, Lewis RE . The molecular scaffold KSR1 regulates the proliferative and oncogenic potential of cells. Mol Cell Biol 2004; 24: 4407–4416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brummer T, Naegele H, Reth M, Misawa Y . Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene 2003; 22: 8823–8834.

    Article  CAS  PubMed  Google Scholar 

  38. Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 2005; 17: 215–224.

    Article  CAS  PubMed  Google Scholar 

  39. Hong SK, Yoon S, Moelling C, Arthan D, Park JI . Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling. J Biol Chem 2009; 284: 33006–33018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morrison DK, Heidecker G, Rapp UR, Copeland TD . Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem 1993; 268: 17309–17316.

    CAS  PubMed  Google Scholar 

  41. Muslin AJ, Tanner JW, Allen PM, Shaw AS . Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 1996; 84: 889–897.

    Article  CAS  PubMed  Google Scholar 

  42. St-Denis NA, Litchfield DW . Protein kinase CK2 in health and disease: From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci 2009; 66: 1817–1829.

    Article  CAS  PubMed  Google Scholar 

  43. Santos SD, Verveer PJ, Bastiaens PI . Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 2007; 9: 324–330.

    Article  CAS  PubMed  Google Scholar 

  44. Brightman FA, Fell DA . Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett 2000; 482: 169–174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH) CA033505 (Yen), CA152870 (Yen), 1U54 CA143876 (Shuler), and the New York State Stem Cell Science (NYSTEM) (Yen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Yen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Congleton, J., MacDonald, R. & Yen, A. Src inhibitors, PP2 and dasatinib, increase retinoic acid-induced association of Lyn and c-Raf (S259) and enhance MAPK-dependent differentiation of myeloid leukemia cells. Leukemia 26, 1180–1188 (2012). https://doi.org/10.1038/leu.2011.390

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.390

Keywords

This article is cited by

Search

Quick links