Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Spotlight on Signaling Pathways Regulating HSC

Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development

Abstract

A strict balance between self-renewal and differentiation of hematopoietic stem cells (HSCs) is required in order to maintain homeostasis, as well as to efficiently respond to injury and infections. Numbers and fate decisions made by progenitors derived from HSC must also be carefully regulated to sustain large-scale production of blood cells. The complex Wnt family of molecules generally is thought to be important to these processes, delivering critical signals to HSC and progenitors as they reside in specialized niches. Wnt proteins have also been extensively studied in connection with malignancies and are causatively involved in the development of several types of leukemias. However, studies with experimental animal models have produced contradictory findings regarding the importance of Wnt signals for normal hematopoiesis and lymphopoiesis. Here, we will argue that dose dependency of signaling via particular Wnt pathways accounts for much, if not all of this controversy. We conclude that there seems little doubt that Wnt proteins are required to sustain normal hematopoiesis, but are likely to be presented in carefully controlled gradients in a tissue-specific manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Staal FJ, Luis TC, Tiemessen MM . WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 2008; 8: 581–593.

    Article  CAS  PubMed  Google Scholar 

  2. Malhotra S, Kincade PW . Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell 2009; 4: 27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barker N, Clevers H . Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 2010; 138: 1681–1696.

    Article  CAS  PubMed  Google Scholar 

  4. Carmon KS, Gong X, Lin Q, Thomas A, Liu Q . R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 2011; 108: 11452–11457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Staal FJ, Sen JM . The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol 2008; 38: 1788–1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mulroy T, McMahon JA, Burakoff SJ, McMahon AP, Sen J . Wnt-1 and Wnt-4 regulate thymic cellularity. Eur J Immunol 2002; 32: 967–971.

    Article  CAS  PubMed  Google Scholar 

  7. Staal FJ, Meeldijk J, Moerer P, Jay P, van de Weerdt BC, Vainio S et al. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol 2001; 31: 285–293.

    Article  CAS  PubMed  Google Scholar 

  8. Staal FJ, Clevers HC . Wnt signaling in the thymus. Curr Opin Immunol 2003; 15: 204–208.

    Article  CAS  PubMed  Google Scholar 

  9. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    Article  CAS  PubMed  Google Scholar 

  10. Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C . Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 2006; 7: 1048–1056.

    Article  CAS  PubMed  Google Scholar 

  11. Scheller M, Huelsken J, Rosenbauer F, Taketo MM, Birchmeier W, Tenen DG et al. Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat Immunol 2006; 7: 1037–1047.

    Article  CAS  PubMed  Google Scholar 

  12. Grigoryan T, Wend P, Klaus A, Birchmeier W . Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 2008; 22: 2308–2341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aoki K, Taketo MM . Tissue-specific transgenic, conditional knockout and knock-in mice of genes in the canonical Wnt signaling pathway. Methods Mol Biol 2008; 468: 307–331.

    Article  CAS  PubMed  Google Scholar 

  14. Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M et al. Canonical Wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 2011; 9: 345–356.

    Article  CAS  PubMed  Google Scholar 

  15. Kielman MF, Rindapaa M, Gaspar C, van Poppel N, Breukel C, van Leeuwen S et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signaling. Nat Genet 2002; 32: 594–605.

    Article  CAS  PubMed  Google Scholar 

  16. Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 2009; 136: 1136–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lane SW, Sykes SM, Al-Shahrour F, Shterental S, Paktinat M, Lo Celso C et al. The Apc(min) mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS. Blood 2010; 115: 3489–3497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang J, Zhang Y, Bersenev A, O'Brien WT, Tong W, Emerson SG et al. Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice. J Clin Invest 2009; 119: 3519–3529.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12: 528–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cobas M, Wilson A, Ernst B, Mancini SJ, MacDonald HR, Kemler R et al. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med 2004; 199: 221–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 2008; 111: 142–149.

    Article  CAS  PubMed  Google Scholar 

  22. Koch U, Wilson A, Cobas M, Kemler R, Macdonald HR, Radtke F . Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 2008; 111: 160–164.

    Article  CAS  PubMed  Google Scholar 

  23. Prlic M, Bevan MJ . Cutting Edge: {beta}-Catenin is dispensable for T cell effector differentiation, memory formation, and recall responses. J Immunol 2011; 187: 1542–1546.

    Article  CAS  PubMed  Google Scholar 

  24. Luis TC, Naber BA, Fibbe WE, van Dongen JJ, Staal FJ . Wnt3a nonredundantly controls hematopoietic stem cell function and its deficiency results in complete absence of canonical Wnt signaling. Blood 2010; 116: 496–497.

    Article  CAS  PubMed  Google Scholar 

  25. Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008; 2: 274–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luis TC, Weerkamp F, Naber BA, Baert MR, de Haas EF, Nikolic T et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 2009; 113: 546–554.

    Article  CAS  PubMed  Google Scholar 

  27. Galceran J, Farinas I, Depew MJ, Clevers H, Grosschedl R . Wnt3a-/--like phenotype and limb deficiency in Lef1(−/−)Tcf1(−/−) mice. Genes Dev 1999; 13: 709–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP . Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 1994; 8: 174–189.

    Article  CAS  PubMed  Google Scholar 

  29. Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R . Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 1998; 8: 11–20.

    Article  CAS  PubMed  Google Scholar 

  30. Schilham MW, Wilson A, Moerer P, Benaissa-Trouw BJ, Cumano A, Clevers HC . Critical involvement of Tcf-1 in expansion of thymocytes. J Immunol 1998; 161: 3984–3991.

    CAS  PubMed  Google Scholar 

  31. Malhotra S, Kincade PW . Canonical Wnt pathway signaling suppresses VCAM-1 expression by marrow stromal and hematopoietic cells. Exp Hematol 2009; 37: 19–30.

    Article  CAS  PubMed  Google Scholar 

  32. Day TF, Guo X, Garrett-Beal L, Yang Y . Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005; 8: 739–750.

    Article  CAS  PubMed  Google Scholar 

  33. Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C . Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 2005; 8: 727–738.

    Article  CAS  PubMed  Google Scholar 

  34. Rodda SJ, McMahon AP . Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006; 133: 3231–3244.

    Article  CAS  PubMed  Google Scholar 

  35. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002; 346: 1513–1521.

    Article  CAS  PubMed  Google Scholar 

  36. Reya T, O'Riordan M, Okamura R, Devaney E, Willert K, Nusse R et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 2000; 13: 15–24.

    Article  CAS  PubMed  Google Scholar 

  37. Louis I, Heinonen KM, Chagraoui J, Vainio S, Sauvageau G, Perreault C . The signaling protein Wnt4 enhances thymopoiesis and expands multipotent hematopoietic progenitors through beta-catenin-independent signaling. Immunity 2008; 29: 57–67.

    Article  CAS  PubMed  Google Scholar 

  38. Murdoch B, Chadwick K, Martin M, Shojaei F, Shah KV, Gallacher L et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc Natl Acad Sci USA 2003; 100: 3422–3427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM . Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci USA 2007; 104: 15436–15441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suda T, Arai F . Wnt signaling in the niche. Cell 2008; 132: 729–730.

    Article  CAS  PubMed  Google Scholar 

  41. Renstrom J, Istvanffy R, Gauthier K, Shimono A, Mages J, Jardon-Alvarez A et al. Secreted frizzled-related protein 1 extrinsically regulates cycling activity and maintenance of hematopoietic stem cells. Cell Stem Cell 2009; 5: 157–167.

    Article  PubMed  Google Scholar 

  42. Schaniel C, Sirabella D, Qiu J, Niu X, Lemischka IR, Moore KA . Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells. Blood 2011; 118: 2420–2429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pajcini KV, Speck NA, Pear WS . Notch signaling in mammalian hematopoietic stem cells. Leukemia 7; 25: 1525–1532.

    Article  Google Scholar 

  44. Mar BG, Amakye D, Aifantis I, Buonamici S . The controversial role of the Hedgehog pathway in normal and malignant hematopoiesis. Leukemia 2011; 25: 1665–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM . Deletion of beta-catenin impairs T cell development. Nat Immunol 2003; 4: 1177–1182.

    Article  CAS  PubMed  Google Scholar 

  46. Weerkamp F, Baert MR, Naber BA, Koster EE, de Haas EF, Atkuri KR et al. Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci USA 2006; 103: 3322–3326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baba Y, Garrett KP, Kincade PW . Constitutively active beta-catenin confers multilineage differentiation potential on lymphoid and myeloid progenitors. Immunity 2005; 23: 599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baba Y, Yokota T, Spits H, Garrett KP, Hayashi S, Kincade PW . Constitutively active beta-catenin promotes expansion of multipotent hematopoietic progenitors in culture. J Immunol 2006; 177: 2294–2303.

    Article  CAS  PubMed  Google Scholar 

  49. Hudson JE, Zimmermann WH . Tuning Wnt-signaling to enhance cardiomyogenesis in human embryonic and induced pluripotent stem cells. J Mol Cell Cardiol 2011; 51: 277–279.

    Article  CAS  PubMed  Google Scholar 

  50. Katoh M . Network of WNT and other regulatory signaling cascades in pluripotent stem cells and cancer stem cells. Curr Pharm Biotechnol 2011; 12: 160–170.

    Article  CAS  PubMed  Google Scholar 

  51. Malhotra S, Baba Y, Garrett KP, Staal FJ, Gerstein R, Kincade PW . Contrasting responses of lymphoid progenitors to canonical and noncanonical Wnt signals. J Immunol 2008; 181: 3955–3964.

    Article  CAS  PubMed  Google Scholar 

  52. Dosen G, Tenstad E, Nygren MK, Stubberud H, Funderud S, Rian E . Wnt expression and canonical Wnt signaling in human bone marrow B lymphopoiesis. BMC Immunol 2006; 7: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gaspar C, Fodde R . APC dosage effects in tumorigenesis and stem cell differentiation. Int J Dev Biol 2004; 48: 377–386.

    Article  CAS  PubMed  Google Scholar 

  54. Silva-Vargas V, Lo Celso C, Giangreco A, Ofstad T, Prowse DM, Braun KM et al. Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell 2005; 9: 121–131.

    Article  CAS  PubMed  Google Scholar 

  55. Fodde R, Smits R, Clevers H . APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001; 1: 55–67.

    Article  CAS  PubMed  Google Scholar 

  56. Blank U, Karlsson G, Karlsson S . Signaling pathways governing stem-cell fate. Blood 2008; 111: 492–503.

    Article  CAS  PubMed  Google Scholar 

  57. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6: 314–322.

    Article  CAS  PubMed  Google Scholar 

  58. Trowbridge JJ, Moon RT, Bhatia M . Hematopoietic stem cell biology: too much of a Wnt thing. Nat Immunol 2006; 7: 1021–1023.

    Article  CAS  PubMed  Google Scholar 

  59. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R . beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 1997; 16: 3797–3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Trowbridge JJ, Xenocostas A, Moon RT, Bhatia M . Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 2006; 12: 89–98.

    Article  CAS  PubMed  Google Scholar 

  61. Estrach S, Ambler CA, Lo Celso C, Hozumi K, Watt FM . Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 2006; 133: 4427–4438.

    Article  CAS  PubMed  Google Scholar 

  62. Bennett LB, Taylor KH, Arthur GL, Rahmatpanah FB, Hooshmand SI, Caldwell CW . Epigenetic regulation of WNT signaling in chronic lymphocytic leukemia. Epigenomics 2010; 2: 53–70.

    Article  CAS  PubMed  Google Scholar 

  63. Roman-Gomez J, Cordeu L, Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, Garate L et al. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood 2007; 109: 3462–3469.

    Article  CAS  PubMed  Google Scholar 

  64. Valencia A, Roman-Gomez J, Cervera J, Such E, Barragan E, Bolufer P et al. Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia. Leukemia 2009; 23: 1658–1666.

    Article  CAS  PubMed  Google Scholar 

  65. Jost E, Schmid J, Wilop S, Schubert C, Suzuki H, Herman JG et al. Epigenetic inactivation of secreted Frizzled-related proteins in acute myeloid leukaemia. Br J Haematol 2008; 142: 745–753.

    Article  CAS  PubMed  Google Scholar 

  66. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  PubMed  Google Scholar 

  67. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010; 327: 1650–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu Y, Chen Y, Douglas L, Li S . beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 2009; 23: 109–116.

    Article  CAS  PubMed  Google Scholar 

  69. Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 2004; 24: 2890–2904.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Eaves CJ, Humphries RK . Acute myeloid leukemia and the Wnt pathway. N Engl J Med 2010; 362: 2326–2327.

    Article  CAS  PubMed  Google Scholar 

  71. Lane SW, Wang YJ, Lo Celso C, Ragu C, Bullinger L, Sykes SM et al. Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood 2011; 118: 2849–2856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mikesch JH, Steffen B, Berdel WE, Serve H, Müller-Tidow C . The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia 2007; 21: 1638–1647.

    Article  CAS  PubMed  Google Scholar 

  73. Guo Z, Dose M, Kovalovsky D, Chang R, O'Neil J, Look AT et al. Beta-catenin stabilization stalls the transition from double-positive to single-positive stage and predisposes thymocytes to malignant transformation. Blood 2007; 109: 5463–5472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Weerkamp F, van Dongen JJ, Staal FJ . Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 2006; 20: 1197–1205.

    Article  CAS  PubMed  Google Scholar 

  75. Heidel FH, Mar BG, Armstrong SA . Self-renewal related signaling in myeloid leukemia stem cells. Int J Hematol 2011; 94: 109–117.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Staal FJ, Baum C, Cowan C, Dzierzak E, Hacein-Bey-Abina S, Karlsson S et al. Stem cell self-renewal: lessons from bone marrow, gut and iPS toward clinical applications. Leukemia 2011; 25: 1095–1102.

    Article  CAS  PubMed  Google Scholar 

  77. Sengupta A, Banerjee D, Chandra S, Banerji SK, Ghosh R, Roy R et al. Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia 2007; 21: 949–955.

    Article  CAS  PubMed  Google Scholar 

  78. Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Basecke J, Libra M et al. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 2009; 23: 25–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TCL is partially supported by ‘Fundação para a Ciência e a Tecnologia—Portugal'. FJTS is supported in part by the Association of International Cancer Research (AICR) and a TOP-grant from The Netherlands Organisation for Health Research and Development (ZonMW). MHB is supported by a grant from the Netherlands Institute for Regenerative Medicine (NIRM). MI and PWK are supported by grant AI20069 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F J T Staal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luis, T., Ichii, M., Brugman, M. et al. Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 26, 414–421 (2012). https://doi.org/10.1038/leu.2011.387

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.387

Keywords

This article is cited by

Search

Quick links