Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

BCL2 mutations in diffuse large B-cell lymphoma

Abstract

BCL2 is deregulated in diffuse large B-cell lymphoma (DLBCL) by the t(14;18) translocation, gene amplification and/or nuclear factor-κB signaling. RNA-seq data have recently shown that BCL2 is the most highly mutated gene in germinal center B-cell (GCB) DLBCL. We have sequenced BCL2 in 298 primary DLBCL biopsies, 131 additional non-Hodgkin lymphoma biopsies, 24 DLBCL cell lines and 51 germline DNAs. We found frequent BCL2 mutations in follicular lymphoma (FL) and GCB DLBCL, but low levels of BCL2 mutations in activated B-cell DLBCL, mantle cell lymphoma, small lymphocytic leukemia and peripheral T-cell lymphoma. We found no BCL2 mutations in GC centroblasts. Many mutations were non-synonymous; they were preferentially located in the flexible loop domain, with few in BCL2-homology domains. An elevated transition/transversions ratio supports that the mutations result from somatic hypermutation. BCL2 translocations correlate with, and are likely important in acquisition of, additional BCL2 mutations in GCB DLBCL and FL. DLBCL mutations were not independently associated with survival. Although previous studies of BCL2 mutations in FL have reported mutations to result in pseudo-negative BCL2 protein expression, we find this rare in de-novo DLBCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edn. IARC: Lyon, France, 2008.

    Google Scholar 

  2. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  PubMed  Google Scholar 

  3. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM . Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984; 226: 1097–1099.

    Article  CAS  PubMed  Google Scholar 

  4. Vaux DL, Cory S, Adams JM . Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440–442.

    Article  CAS  PubMed  Google Scholar 

  5. Willis TG, Dyer MJ . The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 2000; 96: 808–822.

    CAS  PubMed  Google Scholar 

  6. Iqbal J, Sanger WG, Horsman DE, Rosenwald A, Pickering DL, Dave B et al. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J Pathol 2004; 165: 159–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iqbal J, Neppalli VT, Wright G, Dave BJ, Horsman DE, Rosenwald A et al. BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J Clin Oncol 2006; 24: 961–968.

    Article  CAS  PubMed  Google Scholar 

  8. Saito M, Novak U, Piovan E, Basso K, Sumazin P, Schneider C et al. BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. Proc Natl Acad Sci USA 2009; 106: 11294–11299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Masir N, Campbell LJ, Jones M, Mason DY . Pseudonegative BCL2 protein expression in a t(14;18) translocation positive lymphoma cell line: a need for an alternative BCL2 antibody. Pathology 2010; 42: 212–216.

    Article  CAS  PubMed  Google Scholar 

  10. Schraders M, de Jong D, Kluin P, Groenen P, van Krieken H . Lack of Bcl-2 expression in follicular lymphoma may be caused by mutations in the BCL2 gene or by absence of the t(14;18) translocation. J Pathol 2005; 205: 329–335.

    Article  CAS  PubMed  Google Scholar 

  11. Hermine O, Haioun C, Lepage E, d’Agay MF, Briere J, Lavignac C et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin's lymphoma. Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood 1996; 87: 265–272.

    CAS  PubMed  Google Scholar 

  12. Mounier N, Briere J, Gisselbrecht C, Emile JF, Lederlin P, Sebban C et al. Rituximab plus CHOP (R-CHOP) overcomes bcl-2--associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood 2003; 101: 4279–4284.

    Article  CAS  PubMed  Google Scholar 

  13. Jovanovic MP, Jakovic L, Bogdanovic A, Markovic O, Martinovic VC, Mihaljevic B . Poor outcome in patients with diffuse large B-cell lymphoma is associated with high percentage of bcl-2 and Ki 67-positive tumor cells. Vojnosanit Pregl 2009; 66: 738–743.

    Article  PubMed  Google Scholar 

  14. Iqbal J, Meyer PN, Smith L, Johnson NA, Vose JM, Greiner TC et al. BCL2 predicts survival in germinal center B-cell-like diffuse large B-cell lymphoma treated with CHOP-like therapy and Rituximab. Clin Cancer Res 2011; 17: 7785–7795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gurudutta GU, Verma YK, Singh VK, Gupta P, Raj HG, Sharma RK et al. Structural conservation of residues in BH1 and BH2 domains of Bcl-2 family proteins. FEBS Lett 2005; 579: 3503–3507.

    Article  CAS  PubMed  Google Scholar 

  16. Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 1997; 275: 983–986.

    Article  CAS  PubMed  Google Scholar 

  17. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B . Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008; 5: 621–628.

    Article  CAS  PubMed  Google Scholar 

  18. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010; 42: 181–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476: 298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Savage KJ, Johnson NA, Ben-Neriah S, Connors JM, Sehn LH, Farinha P et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood 2009; 114: 3533–3537.

    Article  CAS  PubMed  Google Scholar 

  21. Shustik J, Han G, Farinha P, Johnson NA, Ben Neriah S, Connors JM et al. Correlations between BCL6 rearrangement and outcome in patients with diffuse large B-cell lymphoma treated with CHOP or R-CHOP. Haematologica 2010; 95: 96–101.

    Article  CAS  PubMed  Google Scholar 

  22. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004; 103: 275–282.

    Article  CAS  PubMed  Google Scholar 

  23. Horsman DE, Connors JM, Pantzar T, Gascoyne RD . Analysis of secondary chromosomal alterations in 165 cases of follicular lymphoma with t(14;18). Genes Chromosomes Cancer 2001; 30: 375–382.

    Article  CAS  PubMed  Google Scholar 

  24. Bentley G, Palutke M, Mohamed AN . Variant t(14;18) in malignant lymphoma: a report of seven cases. Cancer Genet Cytogenet 2005; 157: 12–17.

    Article  CAS  PubMed  Google Scholar 

  25. Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goya R, Sun MG, Morin RD, Leung G, Ha G, Wiegand KC et al. SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics 2010; 26: 730–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rozen S, Skaletsky H . Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000; 132: 365–386.

    CAS  PubMed  Google Scholar 

  28. Ramensky V, Bork P, Sunyaev S . Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002; 30: 3894–3900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001; 412: 341–346.

    Article  CAS  PubMed  Google Scholar 

  30. Weber JS, Berry J, Litwin S, Claflin JL . Somatic hypermutation of the JC intron is markedly reduced in unrearranged kappa and H alleles and is unevenly distributed in rearranged alleles. J Immunol 1991; 146: 3218–3226.

    CAS  PubMed  Google Scholar 

  31. Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF et al. The biochemistry of somatic hypermutation. Annu Rev Immunol 2008; 26: 481–511.

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka S, Louie DC, Kant JA, Reed JC . Frequent incidence of somatic mutations in translocated BCL2 oncogenes of non-Hodgkin's lymphomas. Blood 1992; 79: 229–237.

    CAS  PubMed  Google Scholar 

  33. Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 2008; 451: 841–845.

    Article  CAS  PubMed  Google Scholar 

  34. Deng X, Gao F, Flagg T, Anderson J, May WS . Bcl2's flexible loop domain regulates p53 binding and survival. Mol Cell Biol 2006; 26: 4421–4434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 1997; 278: 1966–1968.

    Article  CAS  PubMed  Google Scholar 

  36. Grandgirard D, Studer E, Monney L, Belser T, Fellay I, Borner C et al. Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2. EMBO J 1998; 17: 1268–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004; 116: 527–540.

    Article  CAS  PubMed  Google Scholar 

  38. Deng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A . BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 2007; 12: 171–185.

    Article  CAS  PubMed  Google Scholar 

  39. Seto M, Jaeger U, Hockett RD, Graninger W, Bennett S, Goldman P et al. Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymphoma. EMBO J 1988; 7: 123–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanaka S, Louie D, Kant J, Reed JC . Application of a PCR-mismatch technique to the BCL-2 gene: detection of point mutations in BCL-2 genes of malignancies with A t(14,18). Leukemia 1992; 6 (Suppl 3): 15S–19S.

    PubMed  Google Scholar 

  41. Pappa VI, Wilkes S, Norton A, Phillips S, Rohatiner AZS, Lister TA et al. Detection of somatic mutations of the bcl-2 oncogene in B cell lymphomas with the t(14;18). Int J Oncol 1997; 11: 481–488.

    CAS  PubMed  Google Scholar 

  42. Chang BS, Minn AJ, Muchmore SW, Fesik SW, Thompson CB . Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2. EMBO J 1997; 16: 968–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Srivastava RK, Mi QS, Hardwick JM, Longo DL . Deletion of the loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis. Proc Natl Acad Sci USA 1999; 96: 3775–3780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Uhlmann EJ, D’Sa-Eipper C, Subramanian T, Wagner AJ, Hay N, Chinnadurai G . Deletion of a nonconserved region of Bcl-2 confers a novel gain of function: suppression of apoptosis with concomitant cell proliferation. Cancer Res 1996; 56: 2506–2509.

    CAS  PubMed  Google Scholar 

  45. Mazel S, Burtrum D, Petrie HT . Regulation of cell division cycle progression by bcl-2 expression: a potential mechanism for inhibition of programmed cell death. J Exp Med 1996; 183: 2219–2226.

    Article  CAS  PubMed  Google Scholar 

  46. O’Reilly LA, Huang DC, Strasser A . The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J 1996; 15: 6979–6990.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Komaki S, Kohno M, Matsuura N, Shimadzu M, Adachi N, Hoshide R et al. The polymorphic 43Thr bcl-2 protein confers relative resistance to autoimmunity: an analytical evaluation. Hum Genet 1998; 103: 435–440.

    Article  CAS  PubMed  Google Scholar 

  48. Petros AM, Gunasekera A, Xu N, Olejniczak ET, Fesik SW . Defining the p53 DNA-binding domain/Bcl-x(L)-binding interface using NMR. FEBS Lett 2004; 559: 171–174.

    Article  CAS  PubMed  Google Scholar 

  49. Deng X, Gao F, Flagg T, May Jr WS . Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proc Natl Acad Sci USA 2004; 101: 153–158.

    Article  CAS  PubMed  Google Scholar 

  50. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B . JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30: 678–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Deng X, Gao F, May Jr WS . Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood 2003; 102: 3179–3185.

    Article  CAS  PubMed  Google Scholar 

  52. Vogler M, Dinsdale D, Sun XM, Young KW, Butterworth M, Nicotera P et al. A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells. Cell Death Differ 2008; 15: 820–830.

    Article  CAS  PubMed  Google Scholar 

  53. Pinton P, Rizzuto R . Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 2006; 13: 1409–1418.

    Article  CAS  PubMed  Google Scholar 

  54. Tomita Y, Marchenko N, Erster S, Nemajerova A, Dehner A, Klein C et al. WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem 2006; 281: 8600–8606.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bruce Woolcock for laboratory work assistance; Martin Hirst, Yongjun Zhao, Angela Tam, Richard Moore and Thomas Zeng for assistance with RNA-seq data; Martin Krzywinski for assistance with the design of Figure 2; and Douglas E Horsman for cytogenetics input. JMS was supported by the Lionel McLeod Award by the Alberta Heritage Foundation for Medical Research and by the Canadian Institutes for Health Research (CIHR). JMS was a PhD candidate at the University of British Columbia and this work was submitted in partial fulfillment of the requirement for the PhD. RDM was a Vanier Scholar of the CIHR and holds a Senior Graduate Studentship from the Michael Smith Foundation for Health Research (MSFHR). DWS and KT were supported by the Terry Fox Foundation Strategic Health Research Training Program in Cancer Research at Canadian Institutes of Health Research (Grant No. TGT-53912). ARB-W was a Senior Scholar of the MSFHR. RDG and JMC are supported by a Program Project Grant for the Terry Fox Foundation (019001). This project was funded in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E.

Author contributions

JMS and NAJ performed the experiments and wrote the paper. RDM performed the analysis of whole-genome libraries. All authors participated in study design and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R D Gascoyne.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Disclaimer

The content of this publication does not necessarily reflect the views of policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuetz, J., Johnson, N., Morin, R. et al. BCL2 mutations in diffuse large B-cell lymphoma. Leukemia 26, 1383–1390 (2012). https://doi.org/10.1038/leu.2011.378

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.378

Keywords

This article is cited by

Search

Quick links