Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases

Abstract

The purpose of this study was the appraisal of the clinical and functional consequences of germline mutations within the gene for the IL-2 inducible T-cell kinase, ITK. Among patients with Epstein-Barr virus-driven lymphoproliferative disorders (EBV-LPD), negative for mutations in SH2D1A and XIAP (n=46), we identified two patients with R29H or D500T,F501L,M503X mutations, respectively. Human wild-type (wt) ITK, but none of the mutants, was able to rescue defective calcium flux in murine Itk−/− T cells. Pulse-chase experiments showed that ITK mutations lead to varying reductions of protein half-life from 25 to 69% as compared with wt ITK (107 min). The pleckstrin homology domain of wt ITK binds most prominently to phosphatidylinositol monophosphates (PI(3)P, PI(4)P, PI(5)P) and to lesser extend to its double or triple phosphorylated derivates (PIP2, PIP3), interactions which were dramatically reduced in the patient with the ITKR29H mutant. ITK mutations are distributed over the entire protein and include missense, nonsense and indel mutations, reminiscent of the situation in its sister kinase in B cells, Bruton's tyrosine kinase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Tanaka N, Asao H, Ohtani K, Nakamura M, Sugamura K . A novel human tyrosine kinase gene inducible in T cells by interleukin 2. FEBS Lett 1993; 324: 1–5.

    Article  CAS  Google Scholar 

  2. Siliciano JD, Morrow TA, Desiderio SV . Itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2. Proc Natl Acad Sci USA 1992; 89: 11194–11198.

    Article  CAS  Google Scholar 

  3. Gibson S, Leung B, Squire JA, Hill M, Arima N, Goss P et al. Identification, cloning, and characterization of a novel human T-cell-specific tyrosine kinase located at the hematopoietin complex on chromosome 5q. Blood 1993; 82: 1561–1572.

    CAS  Google Scholar 

  4. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446: 153–158.

    Article  CAS  Google Scholar 

  5. Väliaho J, Smith CIE, Vihinen M . Btkbase: the mutation database for X-linked agammaglobulinemia. Hum Mutat 2006; 27: 1209–1217.

    Article  Google Scholar 

  6. Lindvall JM, Blomberg KEM, Väliaho J, Vargas L, Heinonen JE, Berglöf A et al. Bruton's tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol Rev 2005; 203: 200–215.

    Article  CAS  Google Scholar 

  7. Huck K, Feyen O, Niehues T, Rüschendorf F, Hübner N, Laws H et al. Girls homozygous for an Il-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest 2009; 119: 1350–1358.

    Article  CAS  Google Scholar 

  8. Sahu N, Venegas AM, Jankovic D, Mitzner W, Gomez-Rodriguez J, Cannons JL et al. Selective expression rather than specific function of Txk and Itk regulate Th1 and Th2 responses. J Immunol 2008; 181: 6125–6131.

    Article  CAS  Google Scholar 

  9. Hu J, Sahu N, Walsh E, August A . Memory phenotype CD8+ T cells with innate function selectively develop in the absence of active Itk. Eur J Immunol 2007; 37: 2892–2899.

    Article  CAS  Google Scholar 

  10. Au-Yeung BB, Katzman SD, Fowell DJ . Cutting edge: Itk-dependent signals required for CD4+ T cells to exert, but not gain, Th2 effector function. J Immunol 2006; 176: 3895–3899.

    Article  CAS  Google Scholar 

  11. Andreotti AH, Schwartzberg PL, Joseph RE, Berg LJ . T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol 2010; 2: a002287.

    Article  Google Scholar 

  12. Schaeffer EM, Yap GS, Lewis CM, Czar MJ, McVicar DW, Cheever AW et al. Mutation of Tec family kinases alters T helper cell differentiation. Nat Immunol 2001; 2: 1183–1188.

    Article  CAS  Google Scholar 

  13. Schaeffer EM, Debnath J, Yap G, McVicar D, Liao XC, Littman DR et al. Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity. Science 1999; 284: 638–641.

    Article  CAS  Google Scholar 

  14. Edgar R, Domrachev M, Lash AE . Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207–210.

    Article  CAS  Google Scholar 

  15. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR . Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 1989; 77: 51–59.

    Article  CAS  Google Scholar 

  16. Mielke C, Tümmler M, Schübeler D, von Hoegen I, Hauser H . Stabilized, long-term expression of heterodimeric proteins from tricistronic mRNA. Gene 2000; 254: 1–8.

    Article  CAS  Google Scholar 

  17. Linka RM, Porter ACG, Volkov A, Mielke C, Boege F, Christensen MO . C-terminal regions of topoisomerase IIalpha and IIbeta determine isoform-specific functioning of the enzymes in vivo. Nucleic Acids Res 2007; 35: 3810–3822.

    Article  CAS  Google Scholar 

  18. Hu C, Chinenov Y, Kerppola TK . Visualization of interactions among bZip and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 2002; 9: 789–798.

    Article  CAS  Google Scholar 

  19. Waibler Z, Sender LY, Merten C, Hartig R, Kliche S, Gunzer M et al. Signaling signatures and functional properties of anti-human CD28 superagonistic antibodies. PLoS ONE 2008; 3: e1708.

    Article  Google Scholar 

  20. Liao XC, Littman DR . Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity 1995; 3: 757–769.

    Article  CAS  Google Scholar 

  21. Stepensky P, Weintraub M, Yanir A, Revel-Vilk S, Krux F, Huck K et al. Il-2-inducible T-cell kinase deficiency: clinical presentation and therapeutic approach. Haematologica 2011; 96: 472–476.

    Article  CAS  Google Scholar 

  22. Biesinger B, Müller-Fleckenstein I, Simmer B, Lang G, Wittmann S, Platzer E et al. Stable growth transformation of human T lymphocytes by Herpesvirus saimiri. Proc Natl Acad Sci USA 1992; 89: 3116–3119.

    Article  CAS  Google Scholar 

  23. Blomberg KEM, Boucheron N, Lindvall JM, Yu L, Raberger J, Berglöf A et al. Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells. BMC Genomics 2009; 10: 233.

    Article  Google Scholar 

  24. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M . KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010; 38 (Database issue): D355–D360.

    Article  CAS  Google Scholar 

  25. Liu KQ, Bunnell SC, Gurniak CB, Berg LJ . T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells. J Exp Med 1998; 187: 1721–1727.

    Article  CAS  Google Scholar 

  26. Nagy E, Maquat LE . A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 1998; 23: 198–199.

    Article  CAS  Google Scholar 

  27. Readinger JA, Mueller KL, Venegas AM, Horai R, Schwartzberg PL . Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunol Rev 2009; 228: 93–114.

    Article  CAS  Google Scholar 

  28. Lemmon MA, Ferguson KM . Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 2000; 350 (Part 1): 1–18.

    Article  CAS  Google Scholar 

  29. Baraldi E, Djinovic Carugo K, Hyvönen M, Surdo PL, Riley AM, Potter BV et al. Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure 1999; 7: 449–460.

    Article  CAS  Google Scholar 

  30. Lemmon MA . Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 2008; 9: 99–111.

    Article  CAS  Google Scholar 

  31. Woods ML, Kivens WJ, Adelsman MA, Qiu Y, August A, Shimizu Y . A novel function for the Tec family tyrosine kinase Itk in activation of beta 1 integrins by the T-cell receptor. EMBO J 2001; 20: 1232–1244.

    Article  CAS  Google Scholar 

  32. Qi Q, Sahu N, August A . Tec kinase Itk forms membrane clusters specifically in the vicinity of recruiting receptors. J Biol Chem 2006; 281: 38529–38534.

    Article  CAS  Google Scholar 

  33. Raberger J, Schebesta A, Sakaguchi S, Boucheron N, Blomberg KEM, Berglöf A et al. The transcriptional regulator Plzf induces the development of CD44 high memory phenotype T cells. Proc Natl Acad Sci USA 2008; 105: 17919–17924.

    Article  CAS  Google Scholar 

  34. Hu J, August A . Naive and innate memory phenotype CD4+ T cells have different requirements for active Itk for their development. J Immunol 2008; 180: 6544–6552.

    Article  CAS  Google Scholar 

  35. Horai R, Mueller KL, Handon RA, Cannons JL, Anderson SM, Kirby MR et al. Requirements for selection of conventional and innate T lymphocyte lineages. Immunity 2007; 27: 775–785.

    Article  CAS  Google Scholar 

  36. Berg LJ, Finkelstein LD, Lucas JA, Schwartzberg PL . Tec family kinases in T lymphocyte development and function. Annu Rev Immunol 2005; 23: 549–600.

    Article  CAS  Google Scholar 

  37. Pachlopnik Schmid J, Canioni D, Moshous D, Touzot F, Mahlaoui N, Hauck F et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood 2011; 117: 1522–1529.

    Article  Google Scholar 

  38. Latour S, Gish G, Helgason CD, Humphries RK, Pawson T, Veillette A . Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nat Immunol 2001; 2: 681–690.

    Article  CAS  Google Scholar 

  39. Mohaamed AJ, Yu L, Bäckesjö C, Vargas L, Faryal R, Aints A et al. Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 2009; 228: 58–73.

    Article  Google Scholar 

  40. Brown K, Long JM, Vial SCM, Dedi N, Dunster NJ, Renwick SB et al. Crystal structures of interleukin-2 tyrosine kinase and their implications for the design of selective inhibitors. J Biol Chem 2004; 279: 18727–18732.

    Article  CAS  Google Scholar 

  41. Heyeck SD, Wilcox HM, Bunnell SC, Berg LJ . Lck phosphorylates the activation loop tyrosine of the Itk kinase domain and activates Itk kinase activity. J Biol Chem 1997; 272: 25401–25408.

    Article  CAS  Google Scholar 

  42. Cho N, Feng P, Lee S, Lee B, Liang X, Chang H et al. Inhibition of T cell receptor signal transduction by tyrosine kinase-interacting protein of Herpesvirus saimiri. J Exp Med 2004; 200: 681–687.

    Article  CAS  Google Scholar 

  43. Pearson H . Surviving a knockout blow. Nature 2002; 415: 8–9.

    Article  CAS  Google Scholar 

  44. Rameh LE, Arvidsson AK, Carraway KL, Couvillon AD, Rathbun G, Crompton A et al. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem 1997; 272: 22059–22066.

    Article  CAS  Google Scholar 

  45. Huang YH, Grasis JA, Miller AT, Xu R, Soonthornvacharin S, Andreotti AH et al. Positive regulation of Itk PH domain function by soluble Ip4. Science 2007; 316: 886–889.

    Article  CAS  Google Scholar 

  46. Qi Q, August A . The Tec family kinase Itk exists as a folded monomer in vivo. J Biol Chem 2009; 284: 29882–29892.

    Article  CAS  Google Scholar 

  47. Nomura K, Kanegane H, Karasuyama H, Tsukada S, Agematsu K, Murakami G et al. Genetic defect in human x-linked agammaglobulinemia impedes a maturational evolution of pro-B cells into a later stage of pre-B cells in the B-cell differentiation pathway. Blood 2000; 96: 610–617.

    CAS  Google Scholar 

  48. Bienemann K, Iouannidou K, Schoenberg K, Krux F, Reuther S, Feyen O et al. INKT cell frequency in peripheral blood of caucasian children and adolescent: the absolute iNKT cell count is stable from birth to adulthood. Scand J Immunol 2011; 74: 406–411.

    Article  CAS  Google Scholar 

  49. Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the pediatric aids clinical trials group p1009 study. J Allergy Clin Immunol 2003; 112: 973–980.

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the patients, their parents and their treating physicians for sharing the clinical data with us. The cell lines HEK 293 and HT-1080, as well as the basic bicistronic expression vectors (pMC) and the coding sequences for ECFP and EYFP were kindly provided by F Boege, Dusseldorf, Germany. We thank S Furlan, S Bellert, M Oellers and U Wiczorek in Dusseldorf, as well as I Mueller-Fleckenstein and M Schmidt in Erlangen, for excellent technical assistance. The ALPS samples were kindly provided by G Lahr. The HLH samples were kindly provided by A Meindl and U zur Stadt. The EBV LPD samples were kindly provided by: J Richter, A Gennery, V Hazar, D K Uygun, P Vorwerk, E Mejstrikova, D Schwabe, M Seidel, C Prada, T Bernig, H von Bernuth, R Schneppenheim, S Choo, M van der Burg, P S Palacin and H Ören. This work was generously supported by the Elterninitative ‘Kinderkrebsklinik e.V.’. SLR, RDv and MRA were supported by the grants of the research committee of the medical faculty of the Heinrich-Heine-University Dusseldorf and the E-Rare project NSEuroNet. AH was supported by the Deutsche Forschungsgemeinschaft (He 2526/7-2). AB was also supported by Grants from the BMBF and the German-Israeli-Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Borkhardt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linka, R., Risse, S., Bienemann, K. et al. Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia 26, 963–971 (2012). https://doi.org/10.1038/leu.2011.371

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.371

Keywords

This article is cited by

Search

Quick links