Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Spotlight on miRNA and Hematopoiesis

Epigenetic regulation of miRNA genes in acute leukemia

Abstract

MicroRNAs (miRNAs) are small non-coding RNA molecules that can negatively regulate gene expression at the post-transcriptional level. miRNA expression patterns are regulated during development and differentiation of the hematopoietic system and have an important role in cell processes such as proliferation, apoptosis, differentiation or even in tumorigenesis of human tumors and in particular of hematological malignancies such as acute leukemias. Various miRNAs and their functions have been intensively studied in acute leukemias but the mechanisms that control their expression are largely unknown for the majority of aberrantly expressed miRNAs. miRNA expression can be regulated by the same genetic mechanism that modulate protein coding genes such as mutation, deletion, amplification, loss of heterozygosity and translocations. In this review we focus on the regulation of miRNAs in acute leukemias mediated by alterations in epigenetic mechanisms such as DNA methylation and histone code, describing the role of these alterations in the pathogenesis, diagnosis and prognosis of acute leukemias and their possible use as new therapeutic targets and biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. He L, Hannon GJ . MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522–531.

    CAS  PubMed  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    CAS  PubMed  Google Scholar 

  3. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  4. Esquela-Kerscher A, Slack FJ . Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    CAS  PubMed  Google Scholar 

  5. Shivdasani RA . MicroRNAs: regulators of gene expression and cell differentiation. Blood 2006; 108: 3646–3653.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    CAS  PubMed  Google Scholar 

  7. Georgantas 3rd RW, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control. Proc Natl Acad Sci USA 2007; 104: 2750–2755.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. O’Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB, Baltimore D . MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci USA 2010; 107: 14235–14240.

    PubMed  PubMed Central  Google Scholar 

  9. Chen CZ . MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 2005; 353: 1768–1771.

    CAS  PubMed  Google Scholar 

  10. Aranda P, Agirre X, Ballestar E, Andreu EJ, Roman-Gomez J, Prieto I et al. Epigenetic signatures associated with different levels of differentiation potential in human stem cells. PLoS One 2009; 4: e7809.

    PubMed  PubMed Central  Google Scholar 

  11. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  13. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999–3004.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schotte D, Pieters R, Den Boer ML . MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia 2011; e-pub ahead of print 24 June 2011; doi:10.1038/leu.2011.151.

    PubMed  Google Scholar 

  15. Mi S, Lu J, Sun M, Li Z, Zhang H, Neilly MB et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA 2007; 104: 19971–19976.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 2006; 103: 7024–7029.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Osada H, Takahashi T . MicroRNAs in biological processes and carcinogenesis. Carcinogenesis 2007; 28: 2–12.

    CAS  PubMed  Google Scholar 

  18. Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res 2009; 15: 2281–2290.

    CAS  PubMed  Google Scholar 

  19. Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, Garate L, Bandres E, Cordeu L et al. Down-Regulation of hsa-miR-10a in Chronic Myeloid Leukemia CD34+ Cells Increases USF2-Mediated Cell Growth. Mol Cancer Res 2008; 6: 1830–1840.

    CAS  PubMed  Google Scholar 

  20. Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 2008; 68: 5049–5058.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim YH, Tsuchiya KD et al. Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 2008; 27: 3880–3888.

    CAS  PubMed  Google Scholar 

  22. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007; 67: 1424–1429.

    CAS  PubMed  Google Scholar 

  23. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006; 9: 435–443.

    CAS  PubMed  Google Scholar 

  24. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006; 5: 29.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64: 3753–3756.

    CAS  PubMed  Google Scholar 

  26. Balaguer F, Moreira L, Lozano JJ, Link A, Ramirez G, Shen Y et al. Colorectal cancers with microsatellite instability display unique miRNA profiles. Clin Cancer Res 2011; 17: 6239–6249.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S, Trapman J et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 2011; e-pub ahead of print 18 July 2011; doi:10.1038/onc.2011.304.

    PubMed  Google Scholar 

  28. Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 2010; 11: 136–146.

    CAS  PubMed  Google Scholar 

  29. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299: 425–436.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. San Jose-Eneriz E, Roman-Gomez J, Jimenez-Velasco A, Garate L, Martin V, Cordeu L et al. MicroRNA expression profiling in Imatinib-resistant Chronic Myeloid Leukemia patients without clinically significant ABL1-mutations. Mol Cancer 2009; 8: 69.

    PubMed  PubMed Central  Google Scholar 

  31. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 2009; 361: 1437–1447.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 2011; 286: 19127–19137.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lv SQ, Kim YH, Giulio F, Shalaby T, Nobusawa S, Yang H et al. Genetic Alterations in MicroRNAs in Medulloblastomas. Brain Pathol 2011; e-pub ahead of print 27 July 2011; doi:10.1111/j.1750-3639.2011.00523.x.

    PubMed  PubMed Central  Google Scholar 

  34. Png KJ, Yoshida M, Zhang XH, Shu W, Lee H, Rimner A et al. MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev 2011; 25: 226–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 2011; 16: 49–58.

    Google Scholar 

  36. Reichek JL, Duan F, Smith LM, Gustafson DM, O’Connor RS, Zhang C et al. Genomic and clinical analysis of amplification of the 13q31 chromosomal region in alveolar rhabdomyosarcoma: a report from the Children's Oncology Group. Clin Cancer Res 2011; 17: 1463–1473.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Agueli C, Cammarata G, Salemi D, Dagnino L, Nicoletti R, La Rosa M et al. 14q32/miRNA clusters loss of heterozygosity in acute lymphoblastic leukemia is associated with up-regulation of BCL11a. Am J Hematol 2010; 85: 575–578.

    CAS  PubMed  Google Scholar 

  38. Mavrakis KJ, Wolfe AL, Oricchio E, Palomero T, de Keersmaecker K, McJunkin K et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 2010; 12: 372–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bousquet M, Quelen C, Rosati R, Mansat-De Mas V, La Starza R, Bastard C et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 2008; 205: 2499–2506.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 2009; 125: 2737–2743.

    CAS  PubMed  Google Scholar 

  41. Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 2008; 105: 13556–13561.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 2008; 68: 4123–4132.

    CAS  PubMed  Google Scholar 

  43. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bird A . DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6–21.

    CAS  PubMed  Google Scholar 

  45. Fernandez AF, Assenov Y, Martin-Subero JI, Balint B, Siebert R, Taniguchi H et al. A DNA methylation fingerprint of 1628 human samples. Genome Res 2011; e-pub ahead of print 12 July 2011.

  46. Baylin SB, Herman JG . DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 2000; 16: 168–174.

    CAS  PubMed  Google Scholar 

  47. Esteller M . Epigenetics in cancer. N Engl J Med 2008; 358: 1148–1159.

    CAS  PubMed  Google Scholar 

  48. Jones PA, Baylin SB . The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 415–428.

    CAS  PubMed  Google Scholar 

  49. Ting AH, McGarvey KM, Baylin SB . The cancer epigenome--components and functional correlates. Genes Dev 2006; 20: 3215–3231.

    CAS  PubMed  Google Scholar 

  50. Baylin SB, Ohm JE . Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006; 6: 107–116.

    CAS  PubMed  Google Scholar 

  51. Esteller M . Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007; 8: 286–298.

    CAS  PubMed  Google Scholar 

  52. Roman-Gomez J, Cordeu L, Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, Garate L et al. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood 2007; 109: 3462–3469.

    CAS  PubMed  Google Scholar 

  53. Agirre X, Roman-Gomez J, Jimenez-Velasco A, Garate L, Montiel-Duarte C, Navarro G et al. ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene 2006; 25: 1862–1870.

    CAS  PubMed  Google Scholar 

  54. San Jose-Eneriz E, Agirre X, Roman-Gomez J, Cordeu L, Garate L, Jimenez-Velasco A et al. Downregulation of DBC1 expression in acute lymphoblastic leukaemia is mediated by aberrant methylation of its promoter. Br J Haematol 2006; 134: 137–144.

    CAS  PubMed  Google Scholar 

  55. Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 2009; 114: 5490–5498.

    CAS  PubMed  Google Scholar 

  56. Milani L, Lundmark A, Kiialainen A, Nordlund J, Flaegstad T, Forestier E et al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood 2010; 115: 1214–1225.

    CAS  PubMed  Google Scholar 

  57. Davidsson J, Lilljebjorn H, Andersson A, Veerla S, Heldrup J, Behrendtz M et al. The DNA methylome of pediatric acute lymphoblastic leukemia. Hum Mol Genet 2009; 18: 4054–4065.

    CAS  PubMed  Google Scholar 

  58. Alvarez S, Suela J, Valencia A, Fernandez A, Wunderlich M, Agirre X et al. DNA methylation profiles and their relationship with cytogenetic status in adult acute myeloid leukemia. PLoS One 2010; 5: e12197.

    PubMed  PubMed Central  Google Scholar 

  59. Lugthart S, Figueroa ME, Bindels E, Skrabanek L, Valk PJ, Li Y et al. Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVI1. Blood 2010; 117: 234–241.

    PubMed  Google Scholar 

  60. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010; 17: 13–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Martin-Subero JI, Ammerpohl O, Bibikova M, Wickham-Garcia E, Agirre X, Alvarez S et al. A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms. PLoS One 2009; 4: e6986.

    PubMed  PubMed Central  Google Scholar 

  62. Zhao H, Wang D, Du W, Gu D, Yang R . MicroRNA and leukemia: tiny molecule, great function. Crit Rev Oncol Hematol 2010; 74: 149–155.

    PubMed  Google Scholar 

  63. Fabbri M, Croce CM . Role of microRNAs in lymphoid biology and disease. Curr Opin Hematol 2011; 18: 266–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fulci V, Colombo T, Chiaretti S, Messina M, Citarella F, Tavolaro S et al. Characterization of B- and T-lineage acute lymphoblastic leukemia by integrated analysis of MicroRNA and mRNA expression profiles. Genes Chromosomes Cancer 2009; 48: 1069–1082.

    CAS  PubMed  Google Scholar 

  65. Schotte D, De Menezes RX, Moqadam FA, Khankahdani LM, Lange-Turenhout E, Chen C et al. MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica 2011; 96: 703–711.

    PubMed  PubMed Central  Google Scholar 

  66. Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH et al. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2009; 23: 313–322.

    CAS  PubMed  Google Scholar 

  67. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008; 111: 3183–3189.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 2008; 105: 15535–15540.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Taylor KH, Pena-Hernandez KE, Davis JW, Arthur GL, Duff DJ, Shi H et al. Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Res 2007; 67: 2617–2625.

    CAS  PubMed  Google Scholar 

  70. Kuang SQ, Bai H, Fang ZH, Lopez G, Yang H, Tong W et al. Aberrant DNA methylation and epigenetic inactivation of Eph receptor tyrosine kinases and ephrin ligands in acute lymphoblastic leukemia. Blood 2010; 115: 2412–2419.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Weber B, Stresemann C, Brueckner B, Lyko F . Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 2007; 6: 1001–1005.

    CAS  PubMed  Google Scholar 

  72. Roman-Gomez J, Agirre X, Jimenez-Velasco A, Arqueros V, Vilas-Zornoza A, Rodriguez-Otero P et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 2009; 27: 1316–1322.

    CAS  PubMed  Google Scholar 

  73. Martin-Palanco V, Rodriguez G, Martin C, Rojas R, Torres A, Roman-Gomez J . microRNA methylation profile has prognosis impact in acute lymphoblastic leukemia patients undergoing stem cell transplantation. Biol Blood Marrow Transplant 2011; 17: 745–748.

    CAS  PubMed  Google Scholar 

  74. Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L, Garate L et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 2009; 69: 4443–4453.

    CAS  PubMed  Google Scholar 

  75. Rodriguez-Otero P, Roman-Gomez J, Vilas-Zornoza A, Jose-Eneriz ES, Martin-Palanco V, Rifon J et al. Deregulation of FGFR1 and CDK6 oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the MIR9 family. Br J Haematol 2011; 155: 73–83.

    CAS  PubMed  Google Scholar 

  76. Wong KY, So CC, Loong F, Chung LP, Lam WW, Liang R et al. Epigenetic inactivation of the miR-124-1 in haematological malignancies. PLoS One 2011; 6: e19027.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Vilas-Zornoza A, Agirre X, Martin-Palanco V, Martin-Subero JI, San Jose-Eneriz E, Garate L et al. Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia. PLoS One 2011; 6: e17012.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007; 26: 731–743.

    CAS  PubMed  Google Scholar 

  81. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007; 17: 1298–1307.

    CAS  PubMed  Google Scholar 

  82. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY . MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 2007; 67: 8433–8438.

    CAS  PubMed  Google Scholar 

  83. Agirre X, Novo FJ, Calasanz MJ, Larrayoz MJ, Lahortiga I, Valganon M et al. TP53 is frequently altered by methylation, mutation, and/or deletion in acute lymphoblastic leukaemia. Mol Carcinog 2003; 38: 201–208.

    CAS  PubMed  Google Scholar 

  84. Chim CS, Wong KY, Qi Y, Loong F, Lam WL, Wong LG et al. Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 2010; 31: 745–750.

    CAS  PubMed  Google Scholar 

  85. Armstrong SA, Look AT . Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 2005; 23: 6306–6315.

    CAS  PubMed  Google Scholar 

  86. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    CAS  PubMed  Google Scholar 

  87. Faderl S, Kantarjian HM, Talpaz M, Estrov Z . Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood 1998; 91: 3995–4019.

    CAS  PubMed  Google Scholar 

  88. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    CAS  PubMed  Google Scholar 

  89. Li S, Ilaria Jr RL, Million RP, Daley GQ, Van Etten RA . The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999; 189: 1399–1412.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 2008; 13: 496–506.

    CAS  PubMed  Google Scholar 

  91. Chim CS, Wong KY, Leung CY, Chung LP, Hui PK, Chan SY et al. Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. J Cell Mol Med 2011; e-pub ahead of print 15 February 2011; doi:10.1111/j.1582-4934.2011.01274.x.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Pui CH, Behm FG, Downing JR, Hancock ML, Shurtleff SA, Ribeiro RC et al. 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. J Clin Oncol 1994; 12: 909–915.

    CAS  PubMed  Google Scholar 

  93. Stumpel DJ, Schotte D, Lange-Turenhout EA, Schneider P, Seslija L, de Menezes RX et al. Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 2011; 25: 429–439.

    CAS  PubMed  Google Scholar 

  94. Dou L, Zheng D, Li J, Li Y, Gao L, Wang L et al. Methylation-mediated repression of microRNA-143 enhances MLL-AF4 oncogene expression. Oncogene 2011; e-pub ahead of print 27 June 2011; doi:10.1038/onc.2011.248.

    PubMed  Google Scholar 

  95. Schotte D, Lange-Turenhout EA, Stumpel DJ, Stam RW, Buijs-Gladdines JG, Meijerink JP et al. Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia. Haematologica 2010; 95: 1675–1682.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bhatia S, Kaul D, Varma N . Potential tumor suppressive function of miR-196b in B-cell lineage acute lymphoblastic leukemia. Mol Cell Biochem 2010; 340: 97–106.

    CAS  PubMed  Google Scholar 

  97. Li X, Liu J, Zhou R, Huang S, Chen XM . Gene silencing of MIR22 in acute lymphoblastic leukaemia involves histone modifications independent of promoter DNA methylation. Br J Haematol 2010; 148: 69–79.

    CAS  PubMed  Google Scholar 

  98. Chase A, Cross NC . Aberrations of EZH2 in cancer. Clin Cancer Res 2011; 17: 2613–2618.

    CAS  PubMed  Google Scholar 

  99. Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci USA 2010; 107: 20980–20985.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007; 39: 237–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Calvanese V, Horrillo A, Hmadcha A, Suarez-Alvarez B, Fernandez AF, Lara E et al. Cancer genes hypermethylated in human embryonic stem cells. PLoS One 2008; 3: e3294.

    PubMed  PubMed Central  Google Scholar 

  102. Martin-Subero JI, Kreuz M, Bibikova M, Bentink S, Ammerpohl O, Wickham-Garcia E et al. New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling. Blood 2009; 113: 2488–2497.

    CAS  PubMed  Google Scholar 

  103. Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR et al. Coordinated Regulation of Polycomb Group Complexes through microRNAs in Cancer. Cancer Cell 2011; 20: 187–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125: 301–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Danen-van Oorschot AA, Kuipers JE, Arentsen-Peters S, Schotte D, de Haas V, Trka J et al. Differentially expressed miRNAs in cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Pediatr Blood Cancer 2011; e-pub ahead of print 4 August 2011; doi:10.1002/pbc.23279.

    Google Scholar 

  106. Havelange V, Stauffer N, Heaphy CC, Volinia S, Andreeff M, Marcucci G et al. Functional implications of microRNAs in acute myeloid leukemia by integrating microRNA and messenger RNA expression profiling. Cancer 2011; e-pub ahead of print 31 March 2011; doi:10.1002/cncr.26096.

    CAS  PubMed  Google Scholar 

  107. Schwind S, Maharry K, Radmacher MD, Mrozek K, Holland KB, Margeson D et al. Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 5257–5264.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1919–1928.

    CAS  PubMed  Google Scholar 

  109. Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD . The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 2011; 117: 1121–1129.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Vazquez I, Maicas M, Marcotegui N, Conchillo A, Guruceaga E, Roman-Gomez J et al. Silencing of hsa-miR-124 by EVI1 in cell lines and patients with acute myeloid leukemia. Proc Natl Acad Sci USA 2010; 107: E167–E168; author reply E169–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hackanson B, Bennett KL, Brena RM, Jiang J, Claus R, Chen SS et al. Epigenetic modification of CCAAT/enhancer binding protein alpha expression in acute myeloid leukemia. Cancer Res 2008; 68: 3142–3151.

    CAS  PubMed  Google Scholar 

  112. Dickstein J, Senyuk V, Premanand K, Laricchia-Robbio L, Xu P, Cattaneo F et al. Methylation and silencing of miRNA-124 by EVI1 and self-renewal exhaustion of hematopoietic stem cells in murine myelodysplastic syndrome. Proc Natl Acad Sci USA 2010; 107: 9783–9788.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Vazquez I, Maicas M, Cervera J, Agirre X, Marin-Bejar O, Marcotegui N et al. Downregulation of EVI1 is associated with epigenetic alterations and good prognosis in patients with acute myeloid leukemia. Haematologica 2011; 96: 1448–1456.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, Valk PJ, van der Poel-van de Luytgaarde S, Hack R et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 2003; 101: 837–845.

    PubMed  Google Scholar 

  115. Haas K, Kundi M, Sperr WR, Esterbauer H, Ludwig WD, Ratei R et al. Expression and prognostic significance of different mRNA 5’-end variants of the oncogene EVI1 in 266 patients with de novo AML: EVI1 and MDS1/EVI1 overexpression both predict short remission duration. Genes Chromosomes Cancer 2008; 47: 288–298.

    CAS  PubMed  Google Scholar 

  116. Lugthart S, van Drunen E, van Norden Y, van Hoven A, Erpelinck CA, Valk PJ et al. High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 2008; 111: 4329–4337.

    CAS  PubMed  Google Scholar 

  117. Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J . miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 2010; 31: 766–776.

    CAS  PubMed  Google Scholar 

  118. Koschmieder S, Halmos B, Levantini E, Tenen DG . Dysregulation of the C/EBPalpha differentiation pathway in human cancer. J Clin Oncol 2009; 27: 619–628.

    CAS  PubMed  Google Scholar 

  119. Mueller BU, Pabst T . C/EBPalpha and the pathophysiology of acute myeloid leukemia. Curr Opin Hematol 2006; 13: 7–14.

    PubMed  Google Scholar 

  120. Pulikkan JA, Dengler V, Peramangalam PS, Peer Zada AA, Muller-Tidow C, Bohlander SK et al. Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 2010; 115: 1768–1778.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Eyholzer M, Schmid S, Schardt JA, Haefliger S, Mueller BU, Pabst T . Complexity of miR-223 regulation by CEBPA in human AML. Leuk Res 2010; 34: 672–676.

    CAS  PubMed  Google Scholar 

  122. Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 2007; 12: 457–466.

    CAS  PubMed  Google Scholar 

  123. Paschka P, Marcucci G, Ruppert AS, Mrozek K, Chen H, Kittles RA et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 2006; 24: 3904–3911.

    CAS  PubMed  Google Scholar 

  124. Pollard JA, Alonzo TA, Gerbing RB, Ho PA, Zeng R, Ravindranath Y et al. Prevalence and prognostic significance of KIT mutations in pediatric patients with core binding factor AML enrolled on serial pediatric cooperative trials for de novo AML. Blood 2010; 115: 2372–2379.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Gao XN, Lin J, Li YH, Gao L, Wang XR, Wang W et al. MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia. Oncogene 2010; 30: 3416–3428.

    Google Scholar 

  126. Cheng JC, Kinjo K, Judelson DR, Chang J, Wu WS, Schmid I et al. CREB is a critical regulator of normal hematopoiesis and leukemogenesis. Blood 2008; 111: 1182–1192.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Pigazzi M, Manara E, Baron E, Basso G . miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res 2009; 69: 2471–2478.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Prósper.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agirre, X., Martínez-Climent, J., Odero, M. et al. Epigenetic regulation of miRNA genes in acute leukemia. Leukemia 26, 395–403 (2012). https://doi.org/10.1038/leu.2011.344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.344

Keywords

This article is cited by

Search

Quick links