Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase SUV39H1

Abstract

Epigenetic deregulation is involved in acute myeloid leukemia (AML) pathogenesis and epigenetic targeting drugs are in clinical trial. Since the first results with histone-deacetylase inhibitors in AML are controversial, novel single and combined treatments need to be explored. It is tempting to combine chromatin-targeting drugs. SUV39H1, the main methyl-transferase for lysine 9 tri-methylation on histone H3, interacts with oncogenes involved in AML and acts as a transcriptional repressor for hematopoietic differentiation and immortalization. We report here that pharmacological inhibition of SUV39H1 by chaetocin induces apoptosis in leukemia cell lines in vitro and primary AML cells ex vivo, and that it interferes with leukemia growth in vivo. Chaetocin treatment upregulates reactive oxygen species (ROS) production as well as the transcription of death-receptor-related genes, in a ROS-dependent manner, leading to death receptor-dependent apoptosis. In addition to its direct inhibition by chaetocin, SUV39H1 is indirectly modulated by chaetocin-induced ROS. Accordingly, chaetocin potentiates other anti-AML drugs, in a ROS-dependent manner. The decryption of a dual mechanism of action against AML involving both direct and indirect SUV39H1 modulation represents an innovative read-out for the anticancer activity of chaetocin and for its synergy with other anti-AML drugs, suggesting new therapeutic combination strategies in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Goldstone AH, Burnett AK, Wheatley K, Smith AG, Hutchinson RM, Clark RE . Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML11 trial. Blood 2001; 98: 1302–1311.

    Article  CAS  PubMed  Google Scholar 

  2. Rowe JM, Neuberg D, Friedenberg W, Bennett JM, Paietta E, Makary AZ et al. A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: a trial by the Eastern Cooperative Oncology Group. Blood 2004; 103: 479–485.

    Article  CAS  PubMed  Google Scholar 

  3. Sanz M, Burnett A, Lo-Coco F, Lowenberg B . FLT3 inhibition as a targeted therapy for acute myeloid leukemia. Curr Opin Oncol 2009; 21: 594–600.

    Article  CAS  PubMed  Google Scholar 

  4. Eden A, Gaudet F, Waghmare A, Jaenisch R . Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003; 300: 455.

    Article  CAS  PubMed  Google Scholar 

  5. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300: 489–492.

    Article  CAS  PubMed  Google Scholar 

  6. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37: 391–400.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O’Keefe C et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 2009; 113: 1315–1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 2009; 114: 3448–3458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen L, Kantarjian H, Guo Y, Lin E, Shan J, Huang X et al. DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol 2010; 28: 605–613.

    Article  CAS  PubMed  Google Scholar 

  10. Boultwood J, Wainscoat JS . Gene silencing by DNA methylation in haematological malignancies. Br J Haematol 2007; 138: 3–11.

    Article  CAS  PubMed  Google Scholar 

  11. Gurion R, Vidal L, Gafter-Gvili A, Belnik Y, Yeshurun M, Raanani P et al. 5-Azacitidine prolongs overall survival in patients with myelodysplastic syndrome—systematic review and meta-analysis. Haematologica 2010; 95: 303–310.

    Article  CAS  PubMed  Google Scholar 

  12. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Gattermann N, Germing U et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 2010; 28: 562–569.

    Article  CAS  PubMed  Google Scholar 

  13. Altucci L, Clarke N, Nebbioso A, Scognamiglio A, Gronemeyer H . Acute myeloid leukemia: therapeutic impact of epigenetic drugs. Int J Biochem Cell Biol 2005; 37: 1752–1762.

    Article  CAS  PubMed  Google Scholar 

  14. Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 2005; 11: 71–76.

    Article  CAS  PubMed  Google Scholar 

  15. Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 2005; 11: 77–84.

    Article  CAS  PubMed  Google Scholar 

  16. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167–178.

    Article  CAS  PubMed  Google Scholar 

  17. Cole PA . Chemical probes for histone-modifying enzymes. Nat Chem Biol 2008; 4: 590–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A . Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 2005; 1: 143–145.

    Article  CAS  PubMed  Google Scholar 

  19. Isham CR, Tibodeau JD, Jin W, Xu R, Timm MM, Bible KC . Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood 2007; 109: 2579–2588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goyama S, Nitta E, Yoshino T, Kako S, Watanabe-Okochi N, Shimabe M et al. EVI-1 interacts with histone methyltransferases SUV39H1 and G9a for transcriptional repression and bone marrow immortalization. Leukemia 2010; 24: 81–88.

    Article  CAS  PubMed  Google Scholar 

  21. Vire B, de Walque S, Restouin A, Olive D, Van Lint C, Collette Y . Anti-leukemia activity of MS-275 histone deacetylase inhibitor implicates 4-1BBL/4-1BB immunomodulatory functions. PLoS One 2009; 4: e7085.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chou TC, Talalay P . Quantitative analysis of doseeffect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  23. Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR . Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene 2010; 29: 576–588.

    Article  CAS  PubMed  Google Scholar 

  24. Castellano R, Vire B, Pion M, Quivy V, Olive D, Hirsch I et al. Active transcription of the human FASL/CD95L/TNFSF6 promoter region in T lymphocytes involves chromatin remodeling: role of DNA methylation and protein acetylation suggest distinct mechanisms of transcriptional repression. J Biol Chem 2006; 281: 14719–14728.

    Article  CAS  PubMed  Google Scholar 

  25. Cherrier T, Suzanne S, Redel L, Calao M, Marban C, Samah B et al. p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1. Oncogene 2009; 28: 3380–3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marks PA, Breslow R . Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 2007; 25: 84–90.

    Article  CAS  PubMed  Google Scholar 

  27. Robak T, Wierzbowska A . Current and emerging therapies for acute myeloid leukemia. Clin Ther 2009; 31: 2349–2370.

    Article  CAS  PubMed  Google Scholar 

  28. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quesnel B, Guillerm G, Vereecque R, Wattel E, Preudhomme C, Bauters F et al. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 1998; 91: 2985–2990.

    CAS  PubMed  Google Scholar 

  30. Garcia-Manero G, Assouline S, Cortes J, Estrov Z, Kantarjian H, Yang H et al. Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 2008; 112: 981–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 2008; 111: 1060–1066.

    Article  CAS  PubMed  Google Scholar 

  32. Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 2006; 66: 6361–6369.

    Article  CAS  PubMed  Google Scholar 

  33. Silverman LR, Verma A, Odchimar-Reissig R, Cozza A, Najfeld V, Licht JD et al. A phase I/II study of vorinostat, an oral histone deacetylase inhibitor, in combination with azacitidine in patients with the myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Initial results of the phase I trial: A New York Cancer Consortium. J Clin Oncol 2008; 26 (Suppl): abstract 7000.

    Article  Google Scholar 

  34. Raffoux E, Labarthe A, Cras A, Recher C, Turlure P, Marolleau JP et al. Epigenetic therapy with 5-azacitidine, valproic acid, and ATRA in patients with high-risk AML or MDS: results of the French VIVEDEP Phase II study. 50th ASH Annual Meeting 2008.

  35. Qian C, Zhou MM . SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cell Mol Life Sci 2006; 63: 2755–2763.

    Article  CAS  PubMed  Google Scholar 

  36. Krause CD, Yang ZH, Kim YS, Lee JH, Cook JR, Pestka S . Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther 2007; 113: 50–87.

    Article  CAS  PubMed  Google Scholar 

  37. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606–11611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14: 355–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B et al. Arginine methylation regulates the p53 response. Nat Cell Biol 2008; 10: 1431–1439.

    Article  CAS  PubMed  Google Scholar 

  40. Cattaneo F, Nucifora G . EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression. J Cell Biochem 2008; 105: 344–352.

    Article  CAS  PubMed  Google Scholar 

  41. Carbone R, Botrugno OA, Ronzoni S, Insinga A, Di Croce L, Pelicci PG et al. Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein. Mol Cell Biol 2006; 26: 1288–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chakraborty S, Sinha KK, Senyuk V, Nucifora G . SUV39H1 interacts with AML1 and abrogates AML1 transactivity. AML1 is methylated in vivo. Oncogene 2003; 22: 5229–5237.

    Article  CAS  PubMed  Google Scholar 

  43. Tibodeau J, Benson L, Isham C, Owen W, Bible K . The anticancer agent chaetocin is a competitive substrate and inhibitor of thioredoxin reductase. Antioxid Redox Signal 2009; 11: 1097–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cook KM, Hilton ST, Mecinovic J, Motherwell WB, Figg WD, Schofield CJ . Epidithiodiketopiperazines block the interaction between hypoxia-inducible factor-1alpha (HIF-1alpha) and p300 by a zinc ejection mechanism. J Biol Chem 2009; 284: 26831–26838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000; 406: 593–599.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X, Tamaru H, Khan SI, Horton JR, Keefe LJ, Selker EU et al. Structure of the neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 2002; 111: 117–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang X, Yang Z, Khan SI, Horton JR, Tamaru H, Selker EU et al. Structural basis for the product specificity of histone lysine methyltransferases. Mol Cell 2003; 12: 177–185.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Trachootham D, Alexandre J, Huang P . Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009; 8: 579–591.

    Article  CAS  PubMed  Google Scholar 

  49. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010; 17: 225–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chou WC, Hou HA, Chen CY, Tang JL, Yao M, Tsay W et al. Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood 2010; 115: 2749–2754.

    Article  CAS  PubMed  Google Scholar 

  51. Callens C, Coulon S, Naudin J, Radford-Weiss I, Boissel N, Raffoux E et al. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. J Exp Med 2010; 207: 731–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Anne-Odile Hueber for providing the FADD-DN construct, Valérie Depraetere-Ferrier for critical reading and Yves Toiron and Nadège Delacourt for invaluable help for studies on synergism. CH was supported by a MRT fellowship, and CR and GS by fellowships from INCa and PT by the Foundation Monahan; AN was supported by EU (Contract No. 518417). This work was supported by funds from the INSERM, ANRS, INCA (Institut National de Recherche conre le Cancer), ARC (Association de Recherche contre le Cancer) and AIRC (Associazione Italiana per la ricerca contro il cancro, EU (APOSYS 200767 and LSHC-CT2005-518417).

Author contributions

HC performed and designed the research, analyzed data and wrote the manuscript. AN performed and designed the research, and analyzed data. RC, SG and AR performed the research and analyzed data. TP/NV/LA and YC designed the research, analyzed data and wrote the manuscript. LA and YC share senior authorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Altucci.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaib, H., Nebbioso, A., Prebet, T. et al. Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase SUV39H1. Leukemia 26, 662–674 (2012). https://doi.org/10.1038/leu.2011.271

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.271

Keywords

This article is cited by

Search

Quick links