Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Notch is an essential upstream regulator of NF-κB and is relevant for survival of Hodgkin and Reed–Sternberg cells

Abstract

A major pathogenetic mechanism in classical Hodgkin lymphoma (cHL) is constitutive activation of canonical nuclear factor-κB (NF-κB) p50/p65 signaling, controlling lymphoma cell proliferation and survival. Recently, we demonstrated that aberrant Notch1 activity is a negative regulator of the B cell program in B cell-derived Hodgkin and Reed–Sternberg (HRS) cells. Despite abundant evidence for a complex context-dependent cross talk between Notch and NF-κB signaling in hematopoietic cells, it is unknown whether these pathways interact in HRS cells. Here, we show that Notch-signaling inhibition in HRS cells by the γ-secretase inhibitor (GSI) XII results in decreased alternative p52/RelB NF-κB signaling, interfering with processing of the NF-κB2 gene product p100 into its active form p52. As a result, expression of Notch and NF-κB target genes is reduced, and survival of HRS cells is impaired. Stimulation of alternative NF-κB signaling in the Hodgkin cell line L540cy by activation of the CD30 receptor rescued GSI-mediated loss of cell viability and apoptosis induction. Our data reveal that Notch is an essential upstream regulator of alternative NF-κB signaling and indicate cross talk between both the pathways in HRS cells. Therefore, we suggest that targeting the Notch pathway is a promising therapeutic option in cHL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kopan R, Ilagan MX . The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137: 216–233.

    Article  CAS  Google Scholar 

  2. Radtke F, Fasnacht N, Macdonald HR . Notch signaling in the immune system. Immunity 2010; 32: 14–27.

    Article  CAS  Google Scholar 

  3. Jundt F, Anagnostopoulos I, Forster R, Mathas S, Stein H, Dorken B . Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 2002; 99: 3398–3403.

    Article  CAS  Google Scholar 

  4. Kochert K, Ullrich K, Kreher S, Aster JC, Kitagawa M, Johrens K et al. High-level expression of Mastermind-like 2 contributes to aberrant activation of the NOTCH signaling pathway in human lymphomas. Oncogene 2011; 30: 1831–1840.

    Article  CAS  Google Scholar 

  5. Jundt F, Acikgoz O, Kwon SH, Schwarzer R, Anagnostopoulos I, Wiesner B et al. Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma. Leukemia 2008; 22: 1587–1594.

    Article  CAS  Google Scholar 

  6. Osipo C, Golde TE, Osborne BA, Miele LA . Off the beaten pathway: the complex cross talk between Notch and NF-kappaB. Lab Invest 2008; 88: 11–17.

    Article  CAS  Google Scholar 

  7. Bargou RC, Leng C, Krappmann D, Emmerich F, Mapara MY, Bommert K et al. High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed–Sternberg cells. Blood 1996; 87: 4340–4347.

    CAS  PubMed  Google Scholar 

  8. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Invest 1997; 100: 2961–2969.

    Article  CAS  Google Scholar 

  9. Mathas S, Lietz A, Janz M, Hinz M, Jundt F, Scheidereit C et al. Inhibition of NF-kappaB essentially contributes to arsenic-induced apoptosis. Blood 2003; 102: 1028–1034.

    Article  CAS  Google Scholar 

  10. Emmerich F, Meiser M, Hummel M, Demel G, Foss HD, Jundt F et al. Overexpression of I kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed–Sternberg cells. Blood 1999; 94: 3129–3134.

    CAS  PubMed  Google Scholar 

  11. Emmerich F, Theurich S, Hummel M, Haeffker A, Vry MS, Dohner K et al. Inactivating I kappa B epsilon mutations in Hodgkin/Reed–Sternberg cells. J Pathol 2003; 201: 413–420.

    Article  CAS  Google Scholar 

  12. Krappmann D, Emmerich F, Kordes U, Scharschmidt E, Dorken B, Scheidereit C . Molecular mechanisms of constitutive NF-kappaB/Rel activation in Hodgkin/Reed–Sternberg cells. Oncogene 1999; 18: 943–953.

    Article  CAS  Google Scholar 

  13. Horie R, Watanabe T, Morishita Y, Ito K, Ishida T, Kanegae Y et al. Ligand-independent signaling by overexpressed CD30 drives NF-kappaB activation in Hodgkin–Reed—Sternberg cells. Oncogene 2002; 21: 2493–2503.

    Article  CAS  Google Scholar 

  14. Kuppers R . The biology of Hodgkin's lymphoma. Nat Rev Cancer 2009; 9: 15–27.

    Article  Google Scholar 

  15. Nonaka M, Horie R, Itoh K, Watanabe T, Yamamoto N, Yamaoka S . Aberrant NF-kappaB2/p52 expression in Hodgkin/Reed–Sternberg cells and CD30-transformed rat fibroblasts. Oncogene 2005; 24: 3976–3986.

    Article  CAS  Google Scholar 

  16. Saitoh Y, Yamamoto N, Dewan MZ, Sugimoto H, Martinez Bruyn VJ, Iwasaki Y et al. Overexpressed NF-kappaB-inducing kinase contributes to the tumorigenesis of adult T-cell leukemia and Hodgkin Reed–Sternberg cells. Blood 2008; 111: 5118–5129.

    Article  CAS  Google Scholar 

  17. Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S et al. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med 2002; 196: 605–617.

    Article  CAS  Google Scholar 

  18. Guo F, Sun A, Wang W, He J, Hou J, Zhou P et al. TRAF1 is involved in the classical NF-kappaB activation and CD30-induced alternative activity in Hodgkin's lymphoma cells. Mol Immunol 2009; 46: 2441–2448.

    Article  CAS  Google Scholar 

  19. Wright CW, Rumble JM, Duckett C . CD30 activates both the canonical and alternative NF-kB pathways in anaplastic large cell lymphoma cells. J Biol Chem 2007; 282: 10252–10262.

    Article  CAS  Google Scholar 

  20. Hirsch B, Hummel M, Bentink S, Fouladi F, Spang R, Zollinger R et al. CD30-induced signaling is absent in Hodgkin's cells but present in anaplastic large cell lymphoma cells. Am J Pathol 2008; 172: 510–520.

    Article  CAS  Google Scholar 

  21. Bergmann M, Hart L, Lindsay M, Barnes PJ, Newton R . Ikappa B alpha degradation and nuclear factor-kappaB DNA binding are insufficient for interleukin-1beta and tumor necrosis factor-alpha-induced kappaB-dependent transcription. Requirement for an additional activation pathway. J Biol Chem 1998; 273: 6607–6610.

    Article  CAS  Google Scholar 

  22. Nefedova Y, Sullivan DM, Bolick SC, Dalton WS, Gabrilovich DI . Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 2008; 111: 2220–2229.

    Article  CAS  Google Scholar 

  23. Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 2006; 7: 207–215.

    Article  CAS  Google Scholar 

  24. Scheidereit C . IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 2006; 25: 6685–6705.

    Article  CAS  Google Scholar 

  25. Aldinucci D, Lorenzon D, Cattaruzza L, Pinto A, Gloghini A, Carbone A et al. Expression of CCR5 receptors on Reed–Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions. Int J Cancer 2008; 122: 769–776.

    Article  CAS  Google Scholar 

  26. Aldinucci D, Poletto D, Gloghini A, Nanni P, Degan M, Perin T et al. Expression of functional interleukin-3 receptors on Hodgkin and Reed–Sternberg cells. Am J Pathol 2002; 160: 585–596.

    Article  CAS  Google Scholar 

  27. Kapp U, Yeh WC, Patterson B, Elia AJ, Kagi D, Ho A et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed–Sternberg cells. J Exp Med 1999; 189: 1939–1946.

    Article  CAS  Google Scholar 

  28. Schwarzer R, Kaiser M, Acikgoez O, Heider U, Mathas S, Preissner R et al. Notch inhibition blocks multiple myeloma cell-induced osteoclast activation. Leukemia 2008; 22: 2273–2277.

    Article  CAS  Google Scholar 

  29. Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 2009; 113: 856–865.

    Article  CAS  Google Scholar 

  30. Fiumara P, Snell V, Li Y, Mukhopadhyay A, Younes M, Gillenwater AM et al. Functional expression of receptor activator of nuclear factor kappaB in Hodgkin disease cell lines. Blood 2001; 98: 2784–2790.

    Article  CAS  Google Scholar 

  31. Oswald F, Liptay S, Adler G, Schmid RM . NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa. Mol Cell Biol 1998; 18: 2077–2088.

    Article  CAS  Google Scholar 

  32. Alison MR, Lim SM, Nicholson LJ . Cancer stem cells: problems for therapy? J Pathol 2011; 223: 147–161.

    Article  CAS  Google Scholar 

  33. Deangelo DJSR, Silverman LB, Stock W, Attar EC, Fearen I et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. J Clin Oncol 2006; 24: 357s.

    Google Scholar 

  34. Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, de Stanchina E et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 2009; 15: 50–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft (DFG, TRR54, TPB6 to FJ and BD) and the Wilhelm-Sander Stiftung (2006.069.2). We thank Katharina Pardon and Alexander Haake for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Jundt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarzer, R., Dörken, B. & Jundt, F. Notch is an essential upstream regulator of NF-κB and is relevant for survival of Hodgkin and Reed–Sternberg cells. Leukemia 26, 806–813 (2012). https://doi.org/10.1038/leu.2011.265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.265

Keywords

This article is cited by

Search

Quick links