Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Involvement of the Syk–mTOR pathway in follicular lymphoma cell invasion and angiogenesis

Abstract

Follicular lymphoma (FL) is the second-most common non-Hodgkin's lymphoma. The disease affects the lymph nodes, and 50% of patients present with bone marrow infiltration; however, the mechanisms involved in dissemination of the disease are not yet known. We previously reported that FL cells display an overexpression of Syk, a tyrosine kinase involved in many cellular processes including cell migration. Therefore, we sought to explore its role in the invasive process. Here, we show that FL patients display higher matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGF) levels than healthy donors. Moreover, using Syk small interfering RNA and the Syk inhibitor R406, we demonstrate that, in FL cells, Syk is involved in the regulation of MMP-9 and VEGF expression, and that invasion and angiogenesis is mediated through a phosphatidylinositol-3 kinase (PI3K)–mammalian target of rapamycin module. Finally, using a FL xenograft mouse model we observe that fostamatinib (R788), inhibits MMP-9 expression and angiogenesis in vivo. Altogether, this study provides strong evidence that Syk represents an encouraging therapeutic target in FL and suggests the potential use of fostamatinib as an anti-invasive and anti-angiogenic drug.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Leseux L, Hamdi SM, Al Saati T, Capilla F, Recher C, Laurent G et al. Syk-dependent mTOR activation in follicular lymphoma cells. Blood 2006; 108: 4156–4162.

    Article  CAS  Google Scholar 

  2. Leseux L, Laurent G, Laurent C, Rigo M, Blanc A, Olive D et al. PKC zeta mTOR pathway: a new target for rituximab therapy in follicular lymphoma. Blood 2008; 111: 285–291.

    Article  CAS  Google Scholar 

  3. Tauzin S, Ding H, Burdevet D, Borisch B, Hoessli DC . Membrane-associated signaling in human B-lymphoma lines. Exp Cell Res 2011; 317: 151–162.

    Article  CAS  Google Scholar 

  4. Riccaboni M, Bianchi I, Petrillo P . Spleen tyrosine kinases: biology, therapeutic targets and drugs. Drug Discov Today 2010; 15: 517–530.

    Article  CAS  Google Scholar 

  5. Mocsai A, Ruland J, Tybulewicz VL . The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010; 10: 387–402.

    Article  CAS  Google Scholar 

  6. Geahlen RL . Syk and pTyr’d: signaling through the B cell antigen receptor. Biochim Biophys Acta 2009; 1793: 1115–1127.

    Article  CAS  Google Scholar 

  7. Schymeinsky J, Sindrilaru A, Frommhold D, Sperandio M, Gerstl R, Then C et al. The Vav binding site of the non-receptor tyrosine kinase Syk at Tyr 348 is critical for beta2 integrin (CD11/CD18)-mediated neutrophil migration. Blood 2006; 108: 3919–3927.

    Article  CAS  Google Scholar 

  8. Inatome R, Yanagi S, Takano T, Yamamura H . A critical role for Syk in endothelial cell proliferation and migration. Biochem Biophys Res Commun 2001; 286: 195–199.

    Article  CAS  Google Scholar 

  9. Pearce G, Audzevich T, Jessberger R . SYK regulates B-cell migration by phosphorylation of the F-actin interacting protein SWAP-70. Blood 2011; 117: 1574–1584.

    Article  CAS  Google Scholar 

  10. Coopman PJ, Do MT, Barth M, Bowden ET, Hayes AJ, Basyuk E et al. The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 2000; 406: 742–747.

    Article  CAS  Google Scholar 

  11. Hoeller C, Thallinger C, Pratscher B, Bister MD, Schicher N, Loewe R et al. The non-receptor-associated tyrosine kinase Syk is a regulator of metastatic behavior in human melanoma cells. J Invest Dermatol 2005; 124: 1293–1299.

    Article  CAS  Google Scholar 

  12. Wang S, Ding YB, Chen GY, Xia JG, Wu ZY . Hypermethylation of Syk gene in promoter region associated with oncogenesis and metastasis of gastric carcinoma. World J Gastroenterol 2004; 10: 1815–1818.

    Article  CAS  Google Scholar 

  13. Mahabeleshwar GH, Kundu GC . Syk, a protein-tyrosine kinase, suppresses the cell motility and nuclear factor kappa B-mediated secretion of urokinase type plasminogen activator by inhibiting the phosphatidylinositol 3′-kinase activity in breast cancer cells. J Biol Chem 2003; 278: 6209–6221.

    Article  CAS  Google Scholar 

  14. Lu J, Lin WH, Chen SY, Longnecker R, Tsai SC, Chen CL et al. Syk tyrosine kinase mediates Epstein-Barr virus latent membrane protein 2A-induced cell migration in epithelial cells. J Biol Chem 2006; 281: 8806–8814.

    Article  CAS  Google Scholar 

  15. Luangdilok S, Box C, Patterson L, Court W, Harrington K, Pitkin L et al. Syk tyrosine kinase is linked to cell motility and progression in squamous cell carcinomas of the head and neck. Cancer Res 2007; 67: 7907–7916.

    Article  CAS  Google Scholar 

  16. Letellier E, Kumar S, Sancho-Martinez I, Krauth S, Funke-Kaiser A, Laudenklos S et al. CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger their recruitment to the inflammatory site. Immunity 2010; 32: 240–252.

    Article  CAS  Google Scholar 

  17. Chakraborty G, Rangaswami H, Jain S, Kundu GC . Hypoxia regulates cross-talk between Syk and Lck leading to breast cancer progression and angiogenesis. J Biol Chem 2006; 281: 11322–11331.

    Article  CAS  Google Scholar 

  18. Deryugina EI, Quigley JP . Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006; 25: 9–34.

    Article  CAS  Google Scholar 

  19. Vihinen P, Ala-aho R, Kahari VM . Matrix metalloproteinases as therapeutic targets in cancer. Curr Cancer Drug Targets 2005; 5: 203–220.

    Article  CAS  Google Scholar 

  20. Kessenbrock K, Plaks V, Werb Z . Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141: 52–67.

    Article  CAS  Google Scholar 

  21. Ferrara N, Gerber HP, LeCouter J . The biology of VEGF and its receptors. Nat Med 2003; 9: 669–676.

    Article  CAS  Google Scholar 

  22. Ruan J, Hajjar K, Rafii S, Leonard JP . Angiogenesis and antiangiogenic therapy in non-Hodgkin’s lymphoma. Ann Oncol 2009; 20: 413–424.

    Article  CAS  Google Scholar 

  23. Wang ES, Teruya-Feldstein J, Wu Y, Zhu Z, Hicklin DJ, Moore MA . Targeting autocrine and paracrine VEGF receptor pathways inhibits human lymphoma xenografts in vivo. Blood 2004; 104: 2893–2902.

    Article  CAS  Google Scholar 

  24. Manenti L, Paganoni P, Floriani I, Landoni F, Torri V, Buda A et al. Expression levels of vascular endothelial growth factor, matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 and 2 in the plasma of patients with ovarian carcinoma. Eur J Cancer 2003; 39: 1948–1956.

    Article  CAS  Google Scholar 

  25. Ohta Y, Endo Y, Tanaka M, Shimizu J, Oda M, Hayashi Y et al. Significance of vascular endothelial growth factor messenger RNA expression in primary lung cancer. Clin Cancer Res 1996; 2: 1411–1416.

    CAS  PubMed  Google Scholar 

  26. Hazar B, Polat G, Seyrek E, Bagdatoglglu O, Kanik A, Tiftik N . Prognostic value of matrix metalloproteinases (MMP-2 and MMP-9) in Hodgkin’s and non-Hodgkin’s lymphoma. Int J Clin Pract 2004; 58: 139–143.

    Article  CAS  Google Scholar 

  27. Kossakowska AE, Urbanski SJ, Janowska-Wieczorek A . Matrix metalloproteinases and their tissue inhibitors—expression, role and regulation in human malignant non-Hodgkin’s lymphomas. Leuk Lymphoma 2000; 39: 485–493.

    Article  CAS  Google Scholar 

  28. Salven P, Orpana A, Teerenhovi L, Joensuu H . Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution study of 200 patients. Blood 2000; 96: 3712–3718.

    CAS  PubMed  Google Scholar 

  29. Beitz LO, Fruman DA, Kurosaki T, Cantley LC, Scharenberg AM . SYK is upstream of phosphoinositide 3-kinase in B cell receptor signaling. J Biol Chem 1999; 274: 32662–32666.

    Article  CAS  Google Scholar 

  30. Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G et al. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin -4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem 2008; 51: 5522–5532.

    Article  CAS  Google Scholar 

  31. Salphati L, Wong H, Belvin M, Bradford D, Edgar KA, Prior WW et al. Pharmacokinetic-pharmacodynamic modeling of tumor growth inhibition and biomarker modulation by the novel phosphatidylinositol 3-kinase inhibitor GDC-0941. Drug Metab Dispos 2010; 38: 1436–1442.

    Article  CAS  Google Scholar 

  32. Pennanen H, Kuittinen O, Soini Y, Turpeenniemi-Hujanen T . Prognostic significance of p53 and matrix metalloproteinase-9 expression in follicular lymphoma. Eur J Haematol 2008; 81: 289–297.

    Article  Google Scholar 

  33. Negaard HF, Svennevig K, Kolset SO, Iversen N, Lothe IM, Ostenstad B et al. Alterations in regulators of the extracellular matrix in non-Hodgkin lymphomas. Leuk Lymphoma 2009; 50: 998–1004.

    Article  CAS  Google Scholar 

  34. Gratzinger D, Zhao S, Marinelli RJ, Kapp AV, Tibshirani RJ, Hammer AS et al. Microvessel density and expression of vascular endothelial growth factor and its receptors in diffuse large B-cell lymphoma subtypes. Am J Pathol 2007; 170: 1362–1369.

    Article  CAS  Google Scholar 

  35. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002; 8: 128–135.

    Article  CAS  Google Scholar 

  36. Young RM, Hardy IR, Clarke RL, Lundy N, Pine P, Turner BC et al. Mouse models of non-Hodgkin lymphoma reveal Syk as an important therapeutic target. Blood 2009; 113: 2508–2516.

    Article  CAS  Google Scholar 

  37. Braselmann S, Taylor V, Zhao H, Wang S, Sylvain C, Baluom M et al. R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation. J Pharmacol Exp Ther 2006; 319: 998–1008.

    Article  CAS  Google Scholar 

  38. Sakata K, Satoh M, Someya M, Asanuma H, Nagakura H, Oouchi A et al. Expression of matrix metalloproteinase 9 is a prognostic factor in patients with non-Hodgkin lymphoma. Cancer 2004; 100: 356–365.

    Article  CAS  Google Scholar 

  39. Quiroga MP, Balakrishnan K, Kurtova AV, Sivina M, Keating MJ, Wierda WG et al. B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 2009; 114: 1029–1037.

    Article  CAS  Google Scholar 

  40. Chen JS, Wang Q, Fu XH, Huang XH, Chen XL, Cao LQ et al. Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion and metastasis in hepatocellular carcinoma: association with MMP-9. Hepatol Res 2009; 39: 177–186.

    Article  CAS  Google Scholar 

  41. Han S, Ritzenthaler JD, Sitaraman SV, Roman J . Fibronectin increases matrix metalloproteinase 9 expression through activation of c-Fos via extracellular-regulated kinase and phosphatidylinositol 3-kinase pathways in human lung carcinoma cells. J Biol Chem 2006; 281: 29614–29624.

    Article  CAS  Google Scholar 

  42. Jiang K, Zhong B, Ritchey C, Gilvary DL, Hong-Geller E, Wei S et al. Regulation of Akt-dependent cell survival by Syk and Rac. Blood 2003; 101: 236–244.

    Article  CAS  Google Scholar 

  43. Seeliger H, Guba M, Kleespies A, Jauch KW, Bruns CJ . Role of mTOR in solid tumor systems: a therapeutical target against primary tumor growth, metastases, and angiogenesis. Cancer Metastasis Rev 2007; 26: 611–621.

    Article  Google Scholar 

  44. Vivanco I, Sawyers CL . The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Reviews 2002; 2: 489–501.

    CAS  PubMed  Google Scholar 

  45. Bjornsti MA, Houghton PJ . The TOR pathway: a target for cancer therapy. Nat Rev 2004; 4: 335–348.

    Article  CAS  Google Scholar 

  46. Witzig TE, Gupta M . Signal transduction inhibitor therapy for lymphoma. Hematology Am Soc Hematol Educ Program 2010; 2010: 265–270.

    Article  Google Scholar 

  47. Witzig TE, Reeder CB, LaPlant BR, Gupta M, Johnston PB, Micallef IN et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 2010; 25: 341–347.

    Article  Google Scholar 

  48. Engelman JA . Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev 2009; 9: 550–562.

    Article  CAS  Google Scholar 

  49. Bhende PM, Park SI, Lim MS, Dittmer DP, Damania B . The dual PI3K/mTOR inhibitor, NVP-BEZ235, is efficacious against follicular lymphoma. Leukemia 2010; 24: 1781–1784.

    Article  CAS  Google Scholar 

  50. Smith SM, van Besien K, Karrison T, Dancey J, McLaughlin P, Younes A et al. Temsirolimus has activity in non-mantle cell non-Hodgkin’s lymphoma subtypes: The University of Chicago phase II consortium. J Clin Oncol 2010; 28: 4740–4746.

    Article  CAS  Google Scholar 

  51. Garcia-Martinez JM, Wullschleger S, Preston G, Guichard S, Fleming S, Alessi DR et al. Effect of PI3K- and mTOR-specific inhibitors on spontaneous B-cell follicular lymphomas in PTEN/LKB1-deficient mice. Br J Cancer 2011; 104: 1116–1125.

    Article  CAS  Google Scholar 

  52. Schaller MD . Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 2010; 123: 1007–1013.

    Article  CAS  Google Scholar 

  53. Coffey GP, Rajapaksa R, Liu R, Sharpe O, Kuo CC, Krauss SW et al. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin. J Cell Sci 2009; 122: 3137–3144.

    Article  CAS  Google Scholar 

  54. Iiizumi M, Bandyopadhyay S, Pai SK, Watabe M, Hirota S, Hosobe S et al. RhoC promotes metastasis via activation of the Pyk2 pathway in prostate cancer. Cancer Res 2008; 68: 7613–7620.

    Article  CAS  Google Scholar 

  55. Wan X, Mendoza A, Khanna C, Helman LJ . Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res 2005; 65: 2406–2411.

    Article  CAS  Google Scholar 

  56. Moon KD, Post CB, Durden DL, Zhou Q, De P, Harrison ML et al. Molecular basis for a direct interaction between the Syk protein-tyrosine kinase and phosphoinositide 3-kinase. J Biol Chem 2005; 280: 1543–1551.

    Article  CAS  Google Scholar 

  57. Skinner HD, Zheng JZ, Fang J, Agani F, Jiang BH . Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1alpha, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem 2004; 279: 45643–45651.

    Article  CAS  Google Scholar 

  58. Bradbury D, Clarke D, Seedhouse C, Corbett L, Stocks J, Knox A . Vascular endothelial growth factor induction by prostaglandin E2 in human airway smooth muscle cells is mediated by E prostanoid EP2/EP4 receptors and SP-1 transcription factor binding sites. J Biol Chem 2005; 280: 29993–30000.

    Article  CAS  Google Scholar 

  59. Wang L, Devarajan E, He J, Reddy SP, Dai JL . Transcription repressor activity of spleen tyrosine kinase mediates breast tumor suppression. Cancer Res 2005; 65: 10289–10297.

    Article  CAS  Google Scholar 

  60. Chetty C, Lakka SS, Bhoopathi P, Rao JS . MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int J Cancer 2010; 127: 1081–1095.

    Article  CAS  Google Scholar 

  61. Belotti D, Calcagno C, Garofalo A, Caronia D, Riccardi E, Giavazzi R et al. Vascular endothelial growth factor stimulates organ-specific host matrix metalloproteinase-9 expression and ovarian cancer invasion. Mol Cancer Res 2008; 6: 525–534.

    Article  CAS  Google Scholar 

  62. Labidi SI, Menetrier-Caux C, Chabaud S, Chassagne C, Sebban C, Gargi T et al. Serum cytokines in follicular lymphoma. Correlation of TGF-beta and VEGF with survival. Ann Hematol 2009; 89: 25–33.

    Article  Google Scholar 

  63. Chen L, Monti S, Juszczynski P, Daley J, Chen W, Witzig TE et al. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 2008; 111: 2230–2237.

    Article  CAS  Google Scholar 

  64. Buchner M, Baer C, Prinz G, Dierks C, Burger M, Zenz T et al. Spleen tyrosine kinase inhibition prevents chemokine- and integrin-mediated stromal protective effects in chronic lymphocytic leukemia. Blood 2010; 115: 4497–4506.

    Article  CAS  Google Scholar 

  65. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2010; 115: 2578–2585.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Catherine Trichard (CRCT, INSERM UMR1037) for technical assistance; Florence Capilla and Delphine Lestrade (INSERM-US006 ANEXPLO/CREFRE, service d'Histopathologie, Toulouse, France) for immunohistochemistry analyses; Maryline Calyse, Patrick Arégui and Audrey Boyer (INSERM US006 ANEXPLO/CREFRE, Service de Zootechnie, Toulouse, France) for animal studies; and Sophie Allart and Daniel Sapède (plateau d’imagerie cellulaire, SFR-BMT, Toulouse, France) for confocal microscopy assistance. We thank Yasumichi Hitoshi (Rigel Pharmaceuticals) for providing R406 and R788 and Frédérique Gaits-Iacovoni, Loïc Dupré and Gema Mallet for their expertise and advice on three-dimensional and migration systems. This study was supported by an institutional grant from the INSERM, INCA (Cancéropôle Grand Sud-Ouest) and Roche. Séverine Fruchon is the recipient of a grant from Roche. Samar Kheirallah is the recipient of a grant from l’Association pour la Recherche sur le Cancer.

Author Contributions

SF conceived and designed the research plan, performed experiments, analyzed data and drafted the manuscript. SK designed and performed experiments. LL performed preliminary experiments. JJF contributed to the research plan and prepared figures. GL contributed to the research plan. CB designed the research plan, contributed to the interpretation and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Bezombes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fruchon, S., Kheirallah, S., Al Saati, T. et al. Involvement of the Syk–mTOR pathway in follicular lymphoma cell invasion and angiogenesis. Leukemia 26, 795–805 (2012). https://doi.org/10.1038/leu.2011.248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.248

Keywords

This article is cited by

Search

Quick links