Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Spotlight on Stem Cell Homing and Mobilisation

A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients

Abstract

Hematopoietic stem progenitor cells (HSPCs) respond robustly to α-chemokine stromal-derived factor-1 (SDF-1) gradients, and blockage of CXCR4, a seven-transmembrane-spanning GαI-protein-coupled SDF-1 receptor, mobilizes HSPCs into peripheral blood. Although the SDF-1–CXCR4 axis has an unquestionably important role in the retention of HSPCs in bone marrow (BM), new evidence shows that, in addition to SDF-1, the migration of HSPCs is directed by gradients of the bioactive lipids sphingosine-1 phosphate and ceramide-1 phosphate. Furthermore, the SDF-1 gradient may be positively primed/modulated by cationic peptides (C3a anaphylatoxin and cathelicidin) and, as previously demonstrated, HSPCs respond robustly even to very low SDF-1 gradients in the presence of priming factors. In this review, we discuss the role of bioactive lipids in stem cell trafficking and the consequences of HSPC priming by cationic peptides. Together, these phenomena support a picture in which the SDF-1–CXCR4 axis modulates homing, BM retention and mobilization of HSPCs in a more complex way than previously envisioned.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ . Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98: 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  2. Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Invest 1999; 104: 1199–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levesque JP, Hendy J, Winkler IG, Takamatsu Y, Simmons PJ . Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 2003; 31: 109–117.

    Article  CAS  PubMed  Google Scholar 

  4. Levesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ . Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 2002; 30: 440–449.

    Article  CAS  PubMed  Google Scholar 

  5. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pelus LM, Bian H, King AG, Fukuda S . Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT /CXCL2delta4. Blood 2004; 103: 110–119.

    Article  CAS  PubMed  Google Scholar 

  7. Hanel P, Andréani P, Graler MH . Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J 2007; 21: 1202–1209.

    Article  CAS  PubMed  Google Scholar 

  8. Seitz G, Boehmle, AM, Kanz L, Möhle R . The role of sphingosine 1-phosphate receptors in the trafficking of hematopoietic progenitor cells. Ann N Y Acad Sci 2005; 1044: 84–89.

    Article  CAS  PubMed  Google Scholar 

  9. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ et al. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24: 976–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma Q, Jones D, Springer TA . The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 1999; 10: 463–471.

    Article  CAS  PubMed  Google Scholar 

  11. Christopherson II KW, Hangoc G, Mantel CR, Broxmeyer HE . Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305: 1000–1003.

    Article  CAS  PubMed  Google Scholar 

  12. Onai N, Zhang YY, Yoneyama H, Kitamura T, Ishikawa S, Matsushima K . Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine. Blood 2000; 96: 2074–2080.

    CAS  PubMed  Google Scholar 

  13. Kim CH, Wu W, Wysoczynski M, Abdel-Latif A, Sunkara M, Morris A et al. Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia 2012; 26: 106–116.

    Article  CAS  PubMed  Google Scholar 

  14. Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 2007; 131: 994–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ratajczak MZ, Kim CH, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J . Innate immunity as orchestrator of stem cell mobilization. Leukemia 2010; 24: 1667–1675.

    Article  CAS  PubMed  Google Scholar 

  16. Dar A, Schajnovitz A, Lapid K, Kalinkovich A, Itkin T, Ludin A et al. Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia 2011; 25: 1286–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Granado MH, Gangoiti P, Ouro A, Arana L, González M, Trueba M et al. Ceramide 1-phosphate (C1P) promotes cell migration Involvement of a specific C1P receptor. Cell Signal 2009; 21: 405–412.

    Article  CAS  PubMed  Google Scholar 

  18. Arana L, Gangoiti P, Ouro A, Trueba M, Gómez-Muñoz A . Ceramide and ceramide 1-phosphate in health and disease. Lipids Health Dis 2010; 9: 15–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee HM, Wu W, Wysoczynski M, Liu R, Zuba-Surma EK, Kucia M et al. Impaired mobilization of hematopoietic stem/progenitor cells in C5-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes. Leukemia 2009; 23: 2052–2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fukuoka Y, Hugli TE . Anaphylatoxin binding and degradation by rat peritoneal mast cells. Mechanisms of degranulation and control. J Immunol 1990; 145: 1851–1858.

    CAS  PubMed  Google Scholar 

  21. Mousli M, Hugli TE, Landry Y, Bronner C . A mechanism of action for anaphylatoxin C3a stimulation of mast cells. J Immunol 1992; 148: 2456–2461.

    CAS  PubMed  Google Scholar 

  22. Ratajczak MZ, Reca R, Wysoczynski M, Kucia M, Baran JT, Allendorf DJ et al. Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia 2004; 18: 1482–1490.

    Article  CAS  PubMed  Google Scholar 

  23. Bonig H, Priestley GV, Oehler V, Papayannopoulou T . Hematopoietic progenitor cells (HPC) from mobilized peripheral blood display enhanced migration and marrow homing compared to steady-state bone marrow HPC. Exp Hematol 2007; 35: 326–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simón MF, Andrew C, Miriam M, Paul SF . Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol 2009; 16: 235–242.

    Article  CAS  Google Scholar 

  25. Möbius-Winkler S, Hilberg T, Menzel K, Golla E, Burman A, Schuler G et al. Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol 2009; 107: 1943–1950.

    Article  CAS  PubMed  Google Scholar 

  26. Luster AD, Alon R, von Andrian UH . Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005; 6: 1182–1190.

    Article  CAS  PubMed  Google Scholar 

  27. Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M et al. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 2006; 20: 18–28.

    Article  CAS  PubMed  Google Scholar 

  28. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J et al. Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 2009; 53: 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wojakowski W, Landmesser U, Bachowski R, Jadczyk T, Tendera M . Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia 2012; 26: 23–33.

    Article  CAS  PubMed  Google Scholar 

  30. Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M et al. Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 2009; 40: 1237–1244.

    Article  CAS  PubMed  Google Scholar 

  31. Lee HM, Wysoczynski M, Liu R, Shin DM, Kucia M, Botto M et al. Mobilization studies in complement-deficient mice reveal that optimal AMD3100 mobilization of hematopoietic stem cells depends on complement cascade activation by AMD3100-stimulated granulocytes. Leukemia 2010; 24: 573–582.

    Article  CAS  PubMed  Google Scholar 

  32. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL . Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 2002; 195: 1145–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lapidot T, Dar A, Kollet O . How do stem cells find their way home? Blood 2005; 106: 1901–1910.

    Article  CAS  PubMed  Google Scholar 

  34. Vagima Y, Lapid K, Kollet O, Goichberg P, Alon R, Lapidot T . Pathways implicated in stem cell migration: the SDF-1/CXCR4 axis. Methods Mol Biol 2011; 750: 277–289.

    Article  CAS  PubMed  Google Scholar 

  35. Tarnowski M, Liu R, Wysoczynski M, Ratajczak J, Kucia M, Ratajczak MZ . CXCR7: a new SDF-1-binding receptor in contrast to normal CD34(+) progenitors is functional and is expressed at higher level in human malignant hematopoietic cells. Eur J Haematol 2010; 85: 472–483.

    Article  CAS  PubMed  Google Scholar 

  36. Tarnowski M, Grymula K, Liu R, Tarnowska J, Drukala J, Ratajczak J et al. Macrophage migration inhibitory factor is secreted by rhabdomyosarcoma cells, modulates tumor metastasis by binding to CXCR4 and CXCR7 receptors and inhibits recruitment of cancer-associated fibroblasts. Mol Cancer Res 2010; 8: 1328–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Basu S, Ray NT, Atkinson SJ, Broxmeyer HE . Protein phosphatase 2A plays an important role in stromal cell-derived factor-1/CXC chemokine ligand 12-mediated migration and adhesion of CD34+ cells. J Immunol 2007; 179: 3075–3085.

    Article  CAS  PubMed  Google Scholar 

  38. Gazitt Y, Liu Q . Plasma levels of SDF-1 and expression of SDF-1 receptor on CD34+ cells in mobilized peripheral blood of non-Hodgkin's lymphoma patients. Stem cells 2001; 19: 37–45.

    Article  CAS  PubMed  Google Scholar 

  39. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004; 10: 858–864.

    Article  CAS  PubMed  Google Scholar 

  40. Greenbaum AM, Link DC . Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 2011; 25: 211–217.

    Article  CAS  PubMed  Google Scholar 

  41. Lynch KR . Lysophospholipid receptor nomenclature. Biochim Biophys Acta 2002; 1582: 70–71.

    Article  CAS  PubMed  Google Scholar 

  42. Sanchez T, Hla T . Structural and functional characteristics of S1P receptors. J Cell Biochem 2004; 92: 913–922.

    Article  CAS  PubMed  Google Scholar 

  43. Rivera J, Proia RL, Olivera A . The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 2008; 8: 753–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jo E, Sanna MG, Gonzalez-Cabrera PJ, Thangada S, Tigyi G, Osborne DA et al. S1P1-selective in vivo-active agonists from high-throughput screening: off-the-shelf chemical probes of receptor interactions, signaling, and fate. Chem Biol 2005; 12: 703–715.

    Article  CAS  PubMed  Google Scholar 

  45. Walter DH, Rochwalsky U, Reinhold J, Seeger F, Aicher A, Urbich C et al. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol 2007; 27: 275–282.

    Article  CAS  PubMed  Google Scholar 

  46. Michaud J, Im DS, Hla T . Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J Immunol 2010; 184: 1475–1483.

    Article  CAS  PubMed  Google Scholar 

  47. Graler MH, Goetzl EJ . The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 2004; 18: 551–553.

    Article  CAS  PubMed  Google Scholar 

  48. Boath A, Graf C, Lidome E, Ullrich T, Nussbaumer P, Bornancin F . Regulation and traffic of ceramide 1-phosphate produced by ceramide kinase: comparative analysis to glucosylceramide and sphingomyelin. J Biol Chem 2008; 283: 8517–8526.

    Article  CAS  PubMed  Google Scholar 

  49. Hannun YA, Obeid LM . The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 2002; 277: 25847–25850.

    Article  CAS  PubMed  Google Scholar 

  50. Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E et al. Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta 2006; 1758: 1864–1884.

    Article  CAS  PubMed  Google Scholar 

  51. Gomez-Munoz A, Kong JY, Salh B, Steinbrecher UP . Ceramide-1-phosphate blocks apoptosis through inhibition of acidsphingomyelinase in macrophages. J Lipid Res 2004; 45: 99–105.

    Article  CAS  PubMed  Google Scholar 

  52. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004; 427: 355–360.

    Article  CAS  PubMed  Google Scholar 

  53. Allende ML, Dreier JL, Mandala S, Proia RL . Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 2004; 279: 15396–15401.

    Article  CAS  PubMed  Google Scholar 

  54. Schwab SR, Cyster JG . Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol 2007; 8: 1295–1301.

    Article  CAS  PubMed  Google Scholar 

  55. Pereira JP, Xu Y, Cyster JG . A role for S1P and S1P1 in immature-B cell egress from mouse bone marrow. PLoS One 2010; 5: e9277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Donovan EE, Pelanda R, Torres RM . S1P3 confers differential S1P-induced migration by autoreactive and non-autoreactive immature B cells and is required for normal B-cell development. Eur J Immunol 2010; 40: 688–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brindley DN, English D, Pilquil C, Buri K, Ling ZC . Lipid phosphate phosphatases regulate signal transduction through glycerolipids and sphingolipids. Biochim Biophys Acta 2002; 1582: 33–44.

    Article  CAS  PubMed  Google Scholar 

  58. Sciorra VA, Morris AJ . Roles for lipid phosphate phosphatases in regulation of cellular signaling. Biochim Biophys Acta 2002; 1582: 45–51.

    Article  CAS  PubMed  Google Scholar 

  59. Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG . Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 2005; 309: 1735–1739.

    Article  CAS  PubMed  Google Scholar 

  60. Long J, Darroch P, Wan KF, Kong KC, Ktistakis N, Pyne NJ et al. Regulation of cell survival by lipid phosphate phosphatases involves the modulation of intracellular phosphatidic acid and sphingosine 1-phosphate pools. Biochem J 2005; 391: 25–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mechtcheriakova D, Wlachos A, Sobanov J, Kopp T, Reuschel R, Bornancin F et al. Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses. Cell Signal 2007; 19: 748–760.

    Article  CAS  PubMed  Google Scholar 

  62. Zhao Y, Kalari SK, Usatyuk PV, Gorshkova I, He D, Watkins T et al. Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1. J Biol Chem 2007; 282: 14165–14177.

    Article  CAS  PubMed  Google Scholar 

  63. Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 2007; 316: 295–298.

    Article  CAS  PubMed  Google Scholar 

  64. Hannun YA, Obeid LM . Principles of bioactive lipid signaling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008; 9: 139–150.

    Article  CAS  PubMed  Google Scholar 

  65. Peest U, Sensken SC, Andréani P, Hänel P, Van Veldhoven PP, Gräler MH . S1P-lyase independent clearance of extracellular sphingosine 1-phosphate after dephosphorylation and cellular uptake. J Cell Biochem 2008; 104: 756–772.

    Article  CAS  PubMed  Google Scholar 

  66. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 2000; 106: 951–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lorenz JN, Arend LJ, Robitz R, Paul RJ, MacLennan AJ . Vascular dysfunction in S1P2 sphingosine 1-phosphate receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 2007; 292: R440–R446.

    Article  CAS  PubMed  Google Scholar 

  68. Ishii I, Friedman B, Ye X, Kawamura S, McGiffert C, Contos JJ et al. Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. J Biol Chem 2001; 276: 33697–33704.

    Article  CAS  PubMed  Google Scholar 

  69. Escalante-Alcalde D, Hernandez L, Le Stunff H, Maeda R, Lee HS, Jr-Gang-Cheng et al. The lipid phosphatase LPP3 regulates extra-embryonic vasculogenesis and axis patterning. Development 2003; 130: 4623–4637.

    Article  CAS  PubMed  Google Scholar 

  70. Allende ML, Sasaki T, Kawai H, Olivera A, Mi Y, van Echten-Deckert G et al. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 2004; 279: 52487–52492.

    Article  CAS  PubMed  Google Scholar 

  71. Lee H, Ratajczak MZ . Innate immunity: a key player in the mobilization of hematopoietic stem/progenitor cells. Arch Immunol Ther Exp 2009; 57: 269–278.

    Article  CAS  Google Scholar 

  72. Lévesque JP, Helwani FM, Winkler IG . The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 2010; 24: 1979–1992.

    Article  PubMed  Google Scholar 

  73. Ratajczak MZ, Reca R, Wysoczynski M, Yan J, Ratajczak J . Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)–implications for trafficking of CXCR4+ stem cells. Exp Hematol 2006; 34: 986–995.

    Article  CAS  PubMed  Google Scholar 

  74. Wysoczynski M, Reca R, Lee H, Wu W, Ratajczak J, Ratajczak MZ . Defective engraftment of C3aR-/- hematopoietic stem progenitor cells shows a novel role of the C3a-C3aR axis in bone marrow homing. Leukemia 2009; 23: 1455–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bengtsson NE, Kim S, Lin L, Walter GA, Scott EW . Ultra-high-field MRI real-time imaging of HSC engraftment of the bone marrow niche. Leukemia 2011; 25: 1223–1231.

    Article  CAS  PubMed  Google Scholar 

  76. Ratajczak J, Reca R, Kucia M, Majka M, Allendorf DJ, Baran JT et al. Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood 2004; 103: 2071–2078.

    Article  CAS  PubMed  Google Scholar 

  77. Bandhuvula P, Honbo N, Wang GY, Jin ZQ, Fyrst H, Zhang M et al. S1P lyase: a novel therapeutic target for ischemia-reperfusion injury of the heart. Am J Physiol Heart Circ Physiol 2011; 300: H1753–H1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Borlongan CV . Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all!. Leukemia 2011; e-pub ahead of print 5 July 2011; doi:10.1038/leu.2011.167.

  79. Pelus LM, Fukuda S . Chemokine-mobilized adult stem cells; defining a better hematopoietic graft. Leukemia 2008; 22: 466–473.

    Article  CAS  PubMed  Google Scholar 

  80. Taichman RS . Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 2005; 105: 2631–2639.

    Article  CAS  PubMed  Google Scholar 

  81. King AG, Horowitz D, Dillon SB, Levin R, Farese AM, MacVittie TJ et al. Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 2001; 97: 1534–1542.

    Article  CAS  PubMed  Google Scholar 

  82. Ramirez P, Rettig MP, Uy GL, Deych E, Holt MS, Ritchey JK et al. BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 2009; 114: 1340–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407–421.

    Article  CAS  PubMed  Google Scholar 

  84. Spiegel A, Shivtiel S, Kalinkovich A, Ludin A, Netzer N, Goichberg P et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol 2007; 8: 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  85. Topcuoglu P, Arat M, Dalva K, Ozcan M . Administration of granulocyte-colony-stimulating factor for allogeneic hematopoietic cell collection may induce the tissue factor-dependent pathway in healthy donors. Bone Marrow Transplant 2004; 33: 171–176.

    Article  CAS  PubMed  Google Scholar 

  86. Reca R, Cramer D, Yan J, Laughlin MJ, Janowska-Wieczorek A, Ratajczak J et al. A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins. Stem Cells 2007; 25: 3093–3100.

    Article  CAS  PubMed  Google Scholar 

  87. Farkas I, Baranyi L, Ishikawa Y, Okada N, Bohata C, Budai D et al. CD59 blocks not only the insertion of C9 into MAC but inhibits ion channel formation by homologous C5b-8 as well as C5b-9. J Physiol 2002; 539: 537–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ruiz-Argüelles A, Llorente L . The role of complement regulatory proteins (CD55 and CD59) in the pathogenesis of autoimmune hemocytopenias. Autoimmun Rev 2007; 6: 155–161.

    Article  CAS  PubMed  Google Scholar 

  89. Kimberley FC, Sivasankar B, Paul Morgan B . Alternative roles for CD59. Mol Immunol 2007; 44: 73–81.

    Article  CAS  PubMed  Google Scholar 

  90. Jalili A, Shirvaikar N, Marquez-Curtis L, Qui Y, Korol C, Lee H et al. Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Exp Hematol 2010; 38: 321–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yatomi Y, Ruan F, Hakomori S, Igarashi Y . Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood 1995; 86: 193–202.

    CAS  PubMed  Google Scholar 

  92. Sadir R, Imberty A, Baleux F, Lortat-Jacob H . Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J Biol Chem 2004; 279: 43854–43860.

    Article  CAS  PubMed  Google Scholar 

  93. Ou WC, Liu SM, Xiong LG, Li GQ, Tan MQ . Role of sphingosine 1-phosphate receptor signaling in hematopoietic stem/progenitor cell transmigration. Nan Fang Yi Ke Da Xue Xue Bao 2009; 29: 1862–1865.

    CAS  PubMed  Google Scholar 

  94. Hoggatt J, Singh P, Sampath J, Pelus LM . Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 2009; 113: 5444–5455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hoggatt J, Pelus LM . Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking. Leukemia 2010; 24: 1993–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pettus BJ, Kitatani K, Chalfant CE, Taha TA, Kawamori T, Bielawski J et al. The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate. Mol Pharmacol 2005; 68: 330–335.

    CAS  PubMed  Google Scholar 

  97. Brizuela L, Rábano M, Peña A, Gangoiti P, Macarulla JM, Trueba M et al. Sphingosine 1-phosphate: a novel stimulator of aldosterone secretion. J Lipid Res 2006; 47: 1238–1249.

    Article  CAS  PubMed  Google Scholar 

  98. Ratajczak MZ . Spotlight series on stem cell mobilization: many hands on the ball, but who is the quarterback? Leukemia 2010; 24: 1665–1666.

    Article  CAS  PubMed  Google Scholar 

  99. Ratajczak MZ, Kim CH, Wu W, Shin DM, Bryndza E, Kucia M et al. The role of innate immunity in trafficking of hematopoietic stem cells—an emerging link between activation of complement cascade and chemotactic gradients of bioactive sphingolipids. Curr Top Innate Immun II; doi 10.1007/978-1-4614-0106-3_3.

Download references

Acknowledgements

This work was supported by NIH R01 DK074720, EU structural funds, KBN Grant (N N401 024536), Innovative Economy Operational Program POIG.01.01.02-00-109/09-01 and the Henry M and Stella M Hoenig Endowment (to MZR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Z Ratajczak.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratajczak, M., Kim, C., Abdel-Latif, A. et al. A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 26, 63–72 (2012). https://doi.org/10.1038/leu.2011.242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.242

Keywords

This article is cited by

Search

Quick links