Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Differential requirements for c-Myc in chronic hematopoietic hyperplasia and acute hematopoietic malignancies in Pten-null mice

Abstract

Myeloproliferative disorders (MPDs), lymphoproliferative disorders (LPDs), acute T-lymphocytic or myeloid leukemia and T-lymphocytic lymphoma were developed in inducible Pten (phosphatase and tensin homolog, deleted on chromosome ten)-knockout mice (Pten−/−). The appearance of these multiple diseases in one animal model provides an opportunity to study the pathogenesis of multiple diseases simultaneously. To study whether Myc function is required for the development of these hematopoietic disorders in Pten−/− mice, we generated inducible Pten/Myc double-knockout mice (Pten−/−/Myc−/−). By comparing the hematopoietic phenotypes of these double-knockout mice with those of Pten−/− mice, we found that both sets of animals developed MPDs and LPDs. However, none of the compound-mutant mice developed acute leukemia or lymphoma. Interestingly, in contrast to the MPDs that developed in Pten−/− mice, which are dominated by granulocytes, megakaryocytes predominate in the MPDs of Pten−/−/Myc−/− mice. Our study suggests that the deregulation of phosphoinositide 3-kinase/Akt signaling in Pten−/− hematopoietic cells protects these cells from apoptotic cell death, resulting in chronic proliferative disorders. However, owing to the differential requirement for Myc in granulocyte as compared to megakaryocyte proliferation, Myc deletion converts Pten−/− MPDs from granulocyte- to megakaryocyte-dominated conditions. Myc is absolutely required for the development of acute hematopoietic malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Meyer N, Penn LZ . Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8: 976–990.

    Article  CAS  Google Scholar 

  2. Eilers M, Eisenman RN . Myc's broad reach. Genes Dev 2008; 22: 2755–2766.

    Article  CAS  Google Scholar 

  3. Hoffman B, Amanullah A, Shafarenko M, Liebermann DA . The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene 2002; 21: 3414–3421.

    Article  CAS  Google Scholar 

  4. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20: 2096–2109.

    Article  CAS  Google Scholar 

  5. Fang ZH, Dong CL, Chen Z, Zhou B, Liu N, Lan HF et al. Transcriptional regulation of survivin by c-Myc in BCR/ABL-transformed cells: implications in antileukemic strategy. J Cell Mol Med 2009; 13: 2039–2052.

    Article  Google Scholar 

  6. Schreiner S, Birke M, Garcia-Cuellar MP, Zilles O, Greil J, Slany RK . MLL-ENL causes a reversible and myc-dependent block of myelomonocytic cell differentiation. Cancer Res 2001; 61: 6480–6486.

    CAS  PubMed  Google Scholar 

  7. Vita M, Henriksson M . The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 2006; 16: 318–330.

    Article  CAS  Google Scholar 

  8. Smith DP, Bath ML, Harris AW, Cory S . T-cell lymphomas mask slower developing B-lymphoid and myeloid tumours in transgenic mice with broad haemopoietic expression of MYC. Oncogene 2005; 24: 3544–3553.

    Article  CAS  Google Scholar 

  9. Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JM . The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med 1988; 167: 353–371.

    Article  CAS  Google Scholar 

  10. Luo H, Li Q, O’Neal J, Kreisel F, Le Beau MM, Tomasson MH . c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. Blood 2005; 106: 2452–2461.

    Article  CAS  Google Scholar 

  11. Skoda RC, Tsai SF, Orkin SH, Leder P . Expression of c-MYC under the control of GATA-1 regulatory sequences causes erythroleukemia in transgenic mice. J Exp Med 1995; 181: 1603–1613.

    Article  CAS  Google Scholar 

  12. Laurenti E, Varnum-Finney B, Wilson A, Ferrero I, Blanco-Bose WE, Ehninger A et al. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 2008; 3: 611–624.

    Article  CAS  Google Scholar 

  13. Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Basecke J et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008; 22: 686–707.

    Article  CAS  Google Scholar 

  14. Kharas MG, Okabe R, Ganis JJ, Gozo M, Khandan T, Paktinat M et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 2010; 115: 1406–1415.

    Article  CAS  Google Scholar 

  15. McCubrey JA, Steelman LS, Abrams SL, Bertrand FE, Ludwig DE, Basecke J et al. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 2008; 22: 708–722.

    Article  CAS  Google Scholar 

  16. Gustafson WC, Weiss WA . Myc proteins as therapeutic targets. Oncogene 2010; 29: 1249–1259.

    Article  CAS  Google Scholar 

  17. Bonnet M, Loosveld M, Montpellier B, Navarro JM, Quilichini B, Picard C et al. Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia. Blood 2011; 117: 6650–6659.

    Article  CAS  Google Scholar 

  18. Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 2009; 114: 647–650.

    Article  CAS  Google Scholar 

  19. Cheong JW, Eom JI, Maeng HY, Lee ST, Hahn JS, Ko YW et al. Phosphatase and tensin homologue phosphorylation in the C-terminal regulatory domain is frequently observed in acute myeloid leukaemia and associated with poor clinical outcome. Br J Haematol 2003; 122: 454–456.

    Article  CAS  Google Scholar 

  20. Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 2008; 118: 3762–3774.

    Article  CAS  Google Scholar 

  21. Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 2007; 447: 966–971.

    Article  CAS  Google Scholar 

  22. Shehata M, Schnabl S, Demirtas D, Hilgarth M, Hubmann R, Ponath E et al. Reconstitution of PTEN activity by CK2 inhibitors and interference with the PI3-K/Akt cascade counteract the antiapoptotic effect of human stromal cells in chronic lymphocytic leukemia. Blood 2010; 116: 2513–2521.

    Article  CAS  Google Scholar 

  23. Larson Gedman A, Chen Q, Kugel Desmoulin S, Ge Y, LaFiura K, Haska CL et al. The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the Children's Oncology Group. Leukemia 2009; 23: 1417–1425.

    Article  CAS  Google Scholar 

  24. Barata JT . The impact of PTEN regulation by CK2 on PI3K-dependent signaling and leukemia cell survival. Adv Enzyme Regul 2011; 51: 37–49.

    Article  CAS  Google Scholar 

  25. Yoshimi A, Goyama S, Watanabe-Okochi N, Yoshiki Y, Nannya Y, Nitta E et al. Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood 2011; 117: 3617–3628.

    Article  CAS  Google Scholar 

  26. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR . Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 2000; 20: 5010–5018.

    Article  CAS  Google Scholar 

  27. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross J et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518–522.

    Article  CAS  Google Scholar 

  28. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475–482.

    Article  CAS  Google Scholar 

  29. Guo W, Lasky JL, Chang CJ, Mosessian S, Lewis X, Xiao Y et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 2008; 453: 529–533.

    Article  CAS  Google Scholar 

  30. Xue L, Nolla H, Suzuki A, Mak TW, Winoto A . Normal development is an integral part of tumorigenesis in T cell-specific PTEN-deficient mice. Proc Natl Acad Sci USA 2008; 105: 2022–2027.

    Article  CAS  Google Scholar 

  31. de Alboran IM, O’Hagan RC, Gartner F, Malynn B, Davidson L, Rickert R et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 2001; 14: 45–55.

    Article  CAS  Google Scholar 

  32. Suzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T, Kimura Y et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 2001; 14: 523–534.

    Article  CAS  Google Scholar 

  33. Kuhn R, Schwenk F, Aguet M, Rajewsky K . Inducible gene targeting in mice. Science 1995; 269: 1427–1429.

    Article  CAS  Google Scholar 

  34. Novak A, Guo C, Yang W, Nagy A, Lobe CG . Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 2000; 28: 147–155.

    Article  CAS  Google Scholar 

  35. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    Article  CAS  Google Scholar 

  36. Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP . Impaired Fas response and autoimmunity in Pten± mice. Science 1999; 285: 2122–2125.

    Article  CAS  Google Scholar 

  37. Guo Y, Niu C, Breslin P, Tang M, Zhang S, Wei W et al. c-Myc-mediated control of cell fate in megakaryocyte–erythrocyte progenitors. Blood 2009; 114: 2097–2106.

    Article  CAS  Google Scholar 

  38. Kwabi-Addo B, Giri D, Schmidt K, Podsypanina K, Parsons R, Greenberg N et al. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci USA 2001; 98: 11563–11568.

    Article  CAS  Google Scholar 

  39. Chalhoub N, Baker SJ . PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 2009; 4: 127–150.

    Article  CAS  Google Scholar 

  40. Knobbe CB, Lapin V, Suzuki A, Mak TW . The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 2008; 27: 5398–5415.

    Article  CAS  Google Scholar 

  41. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    Article  CAS  Google Scholar 

  42. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12: 528–541.

    Article  CAS  Google Scholar 

  43. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  Google Scholar 

  44. Hu Y, Chen Y, Douglas L, Li S . Beta-catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 2009; 23: 109–116.

    Article  CAS  Google Scholar 

  45. Miyazaki T, Liu ZJ, Kawahara A, Minami Y, Yamada K, Tsujimoto Y et al. Three distinct IL-2 signaling pathways mediated by bcl-2, c-myc, and lck cooperate in hematopoietic cell proliferation. Cell 1995; 81: 223–231.

    Article  CAS  Google Scholar 

  46. Waters CM, Littlewood TD, Hancock DC, Moore JP, Evan GI . c-myc protein expression in untransformed fibroblasts. Oncogene 1991; 6: 797–805.

    CAS  PubMed  Google Scholar 

  47. Dose M, Khan I, Guo Z, Kovalovsky D, Krueger A, von Boehmer H et al. c-Myc mediates pre-TCR-induced proliferation but not developmental progression. Blood 2006; 108: 2669–2677.

    Article  CAS  Google Scholar 

  48. Douglas NC, Jacobs H, Bothwell AL, Hayday AC . Defining the specific physiological requirements for c-Myc in T cell development. Nat Immunol 2001; 2: 307–315.

    Article  CAS  Google Scholar 

  49. Dose M, Sleckman BP, Han J, Bredemeyer AL, Bendelac A, Gounari F . Intrathymic proliferation wave essential for Valpha14+ natural killer T cell development depends on c-Myc. Proc Natl Acad Sci USA 2009; 106: 8641–8646.

    Article  CAS  Google Scholar 

  50. Mycko MP, Ferrero I, Wilson A, Jiang W, Bianchi T, Trumpp A et al. Selective requirement for c-Myc at an early stage of V(alpha)14i NKT cell development. J Immunol 2009; 182: 4641–4648.

    Article  CAS  Google Scholar 

  51. Bianchi T, Gasser S, Trumpp A, MacDonald HR . c-Myc acts downstream of IL-15 in the regulation of memory CD8 T-cell homeostasis. Blood 2006; 107: 3992–3999.

    Article  CAS  Google Scholar 

  52. Wanner M, Celebi JT, Peacocke M . Identification of a PTEN mutation in a family with Cowden syndrome and Bannayan–Zonana syndrome. J Am Acad Dermatol 2001; 44: 183–187.

    Article  CAS  Google Scholar 

  53. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997; 16: 64–67.

    Article  CAS  Google Scholar 

  54. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.

    Article  CAS  Google Scholar 

  55. He XC, Yin T, Grindley JC, Tian Q, Sato T, Tao WA et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 2007; 39: 189–198.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate Dr Ignacio Moreno de Alborán of the Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Madrid, Spain for his kindness in providing the Mycfx mouse line. We appreciate Dr Tak W Mak of the Campbell Family Institute for Breast Cancer Research, University of Toronto, Toronto, Canada, for his kindness in providing the Ptenfx mouse line. We appreciate the excellent animal care services provided by the staff of the Department of Comparative Medicine of Loyola University Medical Center. This work was supported by the NIH-R01 5R01HL95896-2, the NSFC Project 81071774, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the grant from Science and Technology Commission of Shanghai Municipality (10540503400), Shanghai Normal University Leading Disciplines Project (DZL808) and the Shanghai Leading Academic Discipline Project (S30406), as well as by a grant from the Jimmy Burns Foundation. The authors have no conflicting financial interests.

Author Contributions

JZ, YX, YG and ZZ performed most of the research and analyzed the data. SZ and WW performed some of the research. PB analyzed the data and wrote the paper. JZ designed the research, analyzed the data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z Zhang or J Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Xiao, Y., Guo, Y. et al. Differential requirements for c-Myc in chronic hematopoietic hyperplasia and acute hematopoietic malignancies in Pten-null mice. Leukemia 25, 1857–1868 (2011). https://doi.org/10.1038/leu.2011.220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.220

Keywords

This article is cited by

Search

Quick links