Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Monocytes and T cells cooperate to favor normal and follicular lymphoma B-cell growth: role of IL-15 and CD40L signaling

Abstract

Interleukin-15 (IL-15) has been extensively studied for its role in the survival and proliferation of NK and T cells through a unique mechanism of trans-presentation by producer cells. Conversely, whereas activated B cells have been described as IL-15-responding cells, the cellular and molecular context sustaining this effect remains unexplored. In this study, we found that, whereas human B cells could not respond to soluble IL-15, monocytes and lymphoid tissue-derived macrophages but not stromal cells efficiently trans-present IL-15 to normal B cells and cooperate with T-cell-derived CD40L to promote IL-15-dependent B-cell proliferation. Furthermore, CD40L signaling triggers a Src-independent upregulation of STAT5 expression and favors a Src-dependent phosphorylation of STAT5 in response to IL-15. In follicular lymphoma (FL), immunohistochemical studies reported a strong relationship between malignant B cells, infiltrating macrophages and T cells. We show here an overexpression of IL-15 in purified tumor-associated macrophages, and STAT5A in purified tumor B cells. Moreover, FL B cells respond to IL-15 trans-presented by monocytes/macrophages, in particular, in the presence of CD40L-mediated signaling. This cooperation between IL-15 and CD40L reinforces the importance of tumor microenvironment and unravels a mechanism of FL growth that should be considered if using IL-15 as a drug in this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bende RJ, Smit LA, van Noesel CJ . Molecular pathways in follicular lymphoma. Leukemia 2007; 21: 18–29.

    Article  CAS  PubMed  Google Scholar 

  2. Carbone A, Gloghini A, Cabras A, Elia G . The Germinal centre-derived lymphomas seen through their cellular microenvironment. Br J Haematol 2009; 145: 468–480.

    Article  PubMed  Google Scholar 

  3. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004; 351: 2159–2169.

    Article  CAS  PubMed  Google Scholar 

  4. Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood 2007; 109: 693–702.

    Article  CAS  PubMed  Google Scholar 

  5. Carbone A, Gloghini A, Gruss HJ, Pinto A . CD40 ligand is constitutively expressed in a subset of T cell lymphomas and on the microenvironmental reactive T cells of follicular lymphomas and Hodgkin's disease. Am J Pathol 1995; 147: 912–922.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pangault C, Ame-Thomas P, Ruminy P, Rossille D, Caron G, Baia M et al. Follicular lymphoma cell niche: identification of a preeminent IL-4-dependent T(FH)-B cell axis. Leukemia 2010; 24: 2080–2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farinha P, Masoudi H, Skinnider BF, Shumansky K, Spinelli JJ, Gill K et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood 2005; 106: 2169–2174.

    Article  CAS  PubMed  Google Scholar 

  8. Byers RJ, Sakhinia E, Joseph P, Glennie C, Hoyland JA, Menasce LP et al. Clinical quantitation of immune signature in follicular lymphoma by RT-PCR based gene expression profiling. Blood 2008; 111: 4764–4770.

    Article  CAS  PubMed  Google Scholar 

  9. Canioni D, Salles G, Mounier N, Brousse N, Keuppens M, Morchhauser F et al. High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J Clin Oncol 2008; 26: 440–446.

    Article  CAS  PubMed  Google Scholar 

  10. Taskinen M, Karjalainen-Lindsberg ML, Leppa S . Prognostic influence of tumor-infiltrating mast cells in patients with follicular lymphoma treated with rituximab and CHOP. Blood 2008; 111: 4664–4667.

    Article  CAS  PubMed  Google Scholar 

  11. Clear AJ, Lee AM, Calaminici M, Ramsay AG, Morris KJ, Hallam S et al. Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting micro-environment. Blood 2010; 115: 5053–5056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mueller CG, Boix C, Kwan WH, Daussy C, Fournier E, Fridman WH et al. Critical role of monocytes to support normal B cell and diffuse large B cell lymphoma survival and proliferation. J Leukoc Biol 2007; 82: 567–575.

    Article  CAS  PubMed  Google Scholar 

  13. Rochman Y, Spolski R, Leonard WJ . New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 2009; 9: 480–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Do JS, Min B . IL-15 produced and trans-presented by DCs underlies homeostatic competiti. Blood 2009; 113: 6361–6371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bernasconi NL, Traggiai E, Lanzavecchia A . Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002; 298: 2199–2202.

    Article  CAS  PubMed  Google Scholar 

  16. Armitage RJ, Macduff BM, Eisenman J, Paxton R, Grabstein KH . IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J Immunol 1995; 154: 483–490.

    CAS  PubMed  Google Scholar 

  17. Park CS, Yoon SO, Armitage RJ, Choi YS . Follicular dendritic cells produce IL-15 that enhances germinal center B cell proliferation in membrane-bound form. J Immunol 2004; 173: 6676–6683.

    Article  CAS  PubMed  Google Scholar 

  18. Trentin L, Cerutti A, Zambello R, Sancretta R, Tassinari C, Facco M et al. Interleukin-15 promotes the growth of leukemic cells of patients with B-cell chronic lymphoproliferative disorders. Blood 1996; 87: 3327–3335.

    CAS  PubMed  Google Scholar 

  19. de Totero D, Meazza R, Capaia M, Fabbi M, Azzarone B, Balleari E et al. The opposite effects of IL-15 and IL-21 on CLL B cells correlate with differential activation of the JAK/STAT and ERK1/2 pathways. Blood 2008; 111: 517–524.

    Article  CAS  PubMed  Google Scholar 

  20. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F . The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009; 114: 3367–3375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maby-El Hajjami H, Ame-Thomas P, Pangault C, Tribut O, DeVos J, Jean R et al. Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase. Cancer Res 2009; 69: 3228–3237.

    Article  CAS  PubMed  Google Scholar 

  22. Mortier E, Woo T, Advincula R, Gozalo S, Ma A . IL-15Ralpha chaperones IL-15 to stable dendritic cell membrane complexes that activate NK cells via trans presentation. J Exp Med 2008; 205: 1213–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duitman EH, Orinska Z, Bulanova E, Paus R, Bulfone-Paus S . How a cytokine is chaperoned through the secretory pathway by complexing with its own receptor: lessons from interleukin-15 (IL-15)/IL-15 receptor alpha. Mol Cell Biol 2008; 28: 4851–4861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marmey B, Boix C, Barbaroux JB, Dieu-Nosjean MC, Diebold J, Audouin J et al. CD14 and CD169 expression in human lymph nodes and spleen: specific expansion of CD14+CD169- monocyte-derived cells in diffuse large B-cell lymphomas. Hum Pathol 2006; 37: 68–77.

    Article  CAS  PubMed  Google Scholar 

  25. Neron S, Suck G, Ma XZ, Sakac D, Roy A, Katsman Y et al. B cell proliferation following CD40 stimulation results in the expression and activation of Src protein tyrosine kinase. Int Immunol 2006; 18: 375–387.

    Article  CAS  PubMed  Google Scholar 

  26. Cayer MP, Proulx M, Ma XZ, Sakac D, Giguere JF, Drouin M et al. c-Src tyrosine kinase co-associates with and phosphorylates signal transducer and activator of transcription 5b which mediates the proliferation of normal human B lymphocytes. Clin Exp Immunol 2009; 156: 419–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okutani Y, Kitanaka A, Tanaka T, Kamano H, Ohnishi H, Kubota Y et al. Src directly tyrosine-phosphorylates STAT5 on its activation site and is involved in erythropoietin-induced signaling pathway. Oncogene 2001; 20: 6643–6650.

    Article  CAS  PubMed  Google Scholar 

  28. Musso T, Calosso L, Zucca M, Millesimo M, Ravarino D, Giovarelli M et al. Human monocytes constitutively express membrane-bound, biologically active, and interferon-gamma-upregulated interleukin-15. Blood 1999; 93: 3531–3539.

    CAS  PubMed  Google Scholar 

  29. Glas AM, Knoops L, Delahaye L, Kersten MJ, Kibbelaar RE, Wessels LA et al. Gene-expression and immunohistochemical study of specific T-cell subsets and accessory cell types in the transformation and prognosis of follicular lymphoma. J Clin Oncol 2007; 25: 390–398.

    Article  CAS  PubMed  Google Scholar 

  30. Wahlin BE, Aggarwal M, Montes-Moreno S, Gonzalez LF, Roncador G, Sanchez-Verde L et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1--positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res 2010; 16: 637–650.

    Article  CAS  PubMed  Google Scholar 

  31. Frasca L, Stonier SW, Overwijk WW, Schluns KS . Differential mechanisms of memory CD8 T cell maintenance by individual myeloid cell types. J Leukoc Biol 2010; 88: 69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scheeren FA, Diehl SA, Smit LA, Beaumont T, Naspetti M, Bende RJ et al. IL-21 is expressed in Hodgkin lymphoma and activates STAT5: evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood 2008; 111: 4706–4715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scheeren FA, Naspetti M, Diehl S, Schotte R, Nagasawa M, Wijnands E et al. STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nat Immunol 2005; 6: 303–313.

    Article  CAS  PubMed  Google Scholar 

  34. Taskinen M, Valo E, Karjalainen-Lindsberg ML, Hautaniemi S, Meri S, Leppa S . Signal transducers and activators of transcription 5a-dependent cross-talk between follicular lymphoma cells and tumor microenvironment characterizes a group of patients with improved outcome after R-CHOP. Clin Cancer Res 2010; 16: 2615–2623.

    Article  CAS  PubMed  Google Scholar 

  35. Meier C, Hoeller S, Bourgau C, Hirschmann P, Schwaller J, Went P et al. Recurrent numerical aberrations of JAK2 and deregulation of the JAK2-STAT cascade in lymphomas. Mod Pathol 2009; 22: 476–487.

    Article  CAS  PubMed  Google Scholar 

  36. Nakamura T, Ouchida R, Kodama T, Kawashima T, Makino Y, Yoshikawa N et al. Cytokine receptor common beta subunit-mediated STAT5 activation confers NF-kappa B activation in murine proB cell line Ba/F3 cells. J Biol Chem 2002; 277: 6254–6265.

    Article  CAS  PubMed  Google Scholar 

  37. Nagy ZS, Lebaron MJ, Ross JA, Mitra A, Rui H, Kirken RA . STAT5 regulation of BCL10 parallels constitutive NFkappaB activation in lymphoid tumor cells. Mol Cancer 2009; 8: 67.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mortier E, Advincula R, Kim L, Chmura S, Barrera J, Reizis B et al. Macrophage- and dendritic-cell-derived interleukin-15 receptor alpha supports homeostasis of distinct CD8+ T cell subsets. Immunity 2009; 31: 811–822.

    Article  CAS  PubMed  Google Scholar 

  39. Malamut G, El Machhour R, Montcuquet N, Martin-Lanneree S, Dusanter-Fourt I, Verkarre V et al. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest 2010; 120: 2131–2143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Konforte D, Simard N, Paige CJ . IL-21: an executor of B cell fate. J Immunol 2009; 182: 1781–1787.

    Article  CAS  PubMed  Google Scholar 

  41. Briard D, Brouty-Boye D, Azzarone B, Jasmin C . Fibroblasts from human spleen regulate NK cell differentiation from blood CD34(+) progenitors via cell surface IL-15. J Immunol 2002; 168: 4326–4332.

    Article  CAS  PubMed  Google Scholar 

  42. Rappl G, Kapsokefalou A, Heuser C, Rossler M, Ugurel S, Tilgen W et al. Dermal fibroblasts sustain proliferation of activated T cells via membrane-bound interleukin-15 upon long-term stimulation with tumor necrosis factor-alpha. J Invest Dermatol 2001; 116: 102–109.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang M, Yao Z, Dubois S, Ju W, Muller JR, Waldmann TA . Interleukin-15 combined with an anti-CD40 antibody provides enhanced therapeutic efficacy for murine models of colon cancer. Proc Natl Acad Sci USA 2009; 106: 7513–7518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yarilina A, Park-Min KH, Antoniv T, Hu X, Ivashkiv LB . TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. Nat Immunol 2008; 9: 378–387.

    Article  CAS  PubMed  Google Scholar 

  45. Alvaro T, Lejeune M, Camacho FI, Salvado MT, Sanchez L, Garcia JF et al. The presence of STAT1-positive tumor-associated macrophages and their relation to outcome in patients with follicular lymphoma. Haematologica 2006; 91: 1605–1612.

    CAS  PubMed  Google Scholar 

  46. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 2010; 142: 699–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Yannick Jacques (INSERM U892, Nantes) for helpful discussion, Christophe Ruaux for providing tonsil samples, the ‘réseau clinique BREHAT’ as well as the ‘Centre de Ressources Biologiques-Santé’ of Rennes. This work was supported by research grants from the Institut National du Cancer (INCa libre 2005; PL070 and INCa libre 2006; PL06-10), the Association pour le Développement de l′Hémato-Oncologie (ADHO) and the Ligue Régionale Contre le Cancer. GE was supported by a PhD studentship from the Association pour la Recherche contre le Cancer (ARC) and the Société Française d′Hématologie (SFH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Tarte.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epron, G., Ame-Thomas, P., Le Priol, J. et al. Monocytes and T cells cooperate to favor normal and follicular lymphoma B-cell growth: role of IL-15 and CD40L signaling. Leukemia 26, 139–148 (2012). https://doi.org/10.1038/leu.2011.179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.179

Keywords

This article is cited by

Search

Quick links