Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Heterogeneous sensitivity of human acute myeloid leukemia to β-catenin down-modulation

Abstract

Dysregulation of the Wnt/β-catenin pathway has been observed in various malignancies, including acute myeloid leukemia (AML), where the overexpression of β-catenin is an independent adverse prognostic factor. β-catenin was found upregulated in the vast majority of AML samples and more frequently localized in the nucleus of leukemic stem cells compared with normal bone marrow CD34+ cells. The knockdown of β-catenin, using a short hairpin RNA (shRNA) lentiviral approach, accelerates all-trans retinoic acid-induced differentiation and impairs the proliferation of HL60 leukemic cell line. Using in vivo quantitative tracking of these cells, we observed a reduced engraftment potential after xenotransplantation when β-catenin was silenced. However, when studying primary AML cells, despite effective downregulation of β-catenin we did not observe any impairment of their in vitro long-term maintenance on MS-5 stroma nor of their engraftment potential in vivo. Altogether, these results show that despite a frequent β-catenin upregulation in AML, leukemia-initiating cells might not be ‘addicted’ to this pathway and thus targeted therapy against β-catenin might not be successful in all patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gilliland DG, Jordan CT, Felix CA . The molecular basis of leukemia. Hematol Am Soc Hematol Educ Program 2004; 1: 80–97.

    Article  Google Scholar 

  2. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  Google Scholar 

  3. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  Google Scholar 

  4. Ailles LE, Gerhard B, Kawagoe H, Hogge DE . Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood 1999; 94: 1761–1772.

    CAS  PubMed  Google Scholar 

  5. Ailles LE, Humphries RK, Thomas TE, Hogge DE . Retroviral marking of acute myelogenous leukemia progenitors that initiate long-term culture and growth in immunodeficient mice. Exp Hematol 1999; 27: 1609–1620.

    Article  CAS  Google Scholar 

  6. Feuring-Buske M, Gerhard B, Cashman J, Humphries RK, Eaves CJ, Hogge DE . Improved engraftment of human acute myeloid leukemia progenitor cells in ß 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia 2003; 17: 760–763.

    Article  CAS  Google Scholar 

  7. Rizo A, Dontje B, Vellenga E, de Haan G, Schuringa JJ . Long-term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1. Blood 2008; 111: 2621–2630.

    Article  CAS  Google Scholar 

  8. Sengupta A, Banerjee D, Chandra S, Banerji SK, Ghosh R, Roy R et al. Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia 2007; 21: 949–955.

    Article  CAS  Google Scholar 

  9. Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci USA 2002; 99: 7622–7627.

    CAS  PubMed  Google Scholar 

  10. Bansal D, Scholl C, Frohling S, McDowell E, Lee BH, Dohner K et al. Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proc Natl Acad Sci USA 2006; 103: 16924–16929.

    Article  Google Scholar 

  11. Nusse R . The Wnt Homepage. http://www.stanford.edu/group/nusselab/cgi-bin/wnt/.

  12. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signaling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    Article  CAS  Google Scholar 

  13. Mikesch JH, Steffen B, Berdel WE, Serve H, Muller-Tidow C . The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia 2007; 21: 1638–1647.

    Article  CAS  Google Scholar 

  14. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423: 448–452.

    Article  CAS  Google Scholar 

  15. Baba Y, Yokota T, Spits H, Garrett KP, Hayashi S, Kincade PW . Constitutively active β-catenin promotes expansion of multipotent hematopoietic progenitors in culture. J Immunol 2006; 177: 2294–2303.

    Article  CAS  Google Scholar 

  16. Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C . Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 2006; 7: 1048–1056.

    Article  CAS  Google Scholar 

  17. Scheller M, Huelsken J, Rosenbauer F, Taketo MM, Birchmeier W, Tenen DG et al. Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nat Immunol 2006; 7: 1037–1047.

    Article  CAS  Google Scholar 

  18. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12: 528–541.

    Article  CAS  Google Scholar 

  19. Sloma I, Jiang X, Eaves AC, Eaves CJ . Insights into the stem cells of chronic myeloid leukemia. Leukemia 2010; 24: 1823–1833.

    Article  CAS  Google Scholar 

  20. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  Google Scholar 

  21. Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG et al. Glycogen synthase kinase 3ß missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA 2009; 106: 3925–3929.

    Article  CAS  Google Scholar 

  22. Brandts CH, Sargin B, Rode M, Biermann C, Lindtner B, Schwable J et al. Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation. Cancer Res 2005; 65: 9643–9650.

    Article  CAS  Google Scholar 

  23. Tickenbrock L, Schwable J, Wiedehage M, Steffen B, Sargin B, Choudhary C et al. Flt3 tandem duplication mutations cooperate with Wnt signaling in leukemic signal transduction. Blood 2005; 105: 3699–3706.

    Article  CAS  Google Scholar 

  24. Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 2004; 24: 2890–2904.

    Article  Google Scholar 

  25. Roman-Gomez J, Cordeu L, Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, Garate L et al. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood 2007; 109: 3462–3469.

    Article  CAS  Google Scholar 

  26. Valencia A, Roman-Gomez J, Cervera J, Such E, Barragan E, Bolufer P et al. Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia. Leukemia 2009; 23: 1658–1666.

    Article  CAS  Google Scholar 

  27. Ysebaert L, Chicanne G, Demur C, De Toni F, Prade-Houdellier N, Ruidavets JB et al. Expression of beta-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia 2006; 20: 1211–1216.

    Article  CAS  Google Scholar 

  28. Majeti R, Becker MW, Tian Q, Lee TL, Yan X, Liu R et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci USA 2009; 106: 3396–3401.

    Article  CAS  Google Scholar 

  29. Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D et al. catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 2010; 18: 606–618.

    Article  CAS  Google Scholar 

  30. Siapati EK, Papadaki M, Kozaou Z, Rouka E, Michali E, Savvidou I et al. Proliferation and bone marrow engraftment of AML blasts is dependent on β-catenin signalling. Br J Haematol 2011; 152: 164–174.

    Article  CAS  Google Scholar 

  31. Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 2008; 112: 568–575.

    Article  CAS  Google Scholar 

  32. Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood 2010; 115: 1976–1984.

    Article  CAS  Google Scholar 

  33. Ortyn WE, Hall BE, George TC, Frost K, Basiji DA, Perry DJ et al. Sensitivity measurement and compensation in spectral imaging. Cytometry A 2006; 69: 852–862.

    Article  Google Scholar 

  34. Schuringa JJ, Schepers H . Ex vivo assays to study self-renewal and long-term expansion of genetically modified primary human acute myeloid leukemia stem cells. Methods Mol Biol 2009; 538: 287–300.

    Article  CAS  Google Scholar 

  35. Matkovic K, Brugnoli F, Bertagnolo V, Banfic H, Visnjic D . The role of the nuclear Akt activation and Akt inhibitors in all-trans-retinoic acid-differentiated HL-60 cells. Leukemia 2006; 20: 941–951.

    Article  CAS  Google Scholar 

  36. Wang X, Rosol M, Ge S, Peterson D, McNamara G, Pollack H et al. Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 2003; 102: 3478–3482.

    Article  CAS  Google Scholar 

  37. Luo J, Solimini NL, Elledge SJ . Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009; 136: 823–837.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of the London Research Institute Flow Cytometry and Equipment Park facilities and Christopher Ridler for technical assistance; Stuart Horswell for statistical analysis; Katie Foster and Yasmin Reyal for proof reading of the final paper and David Taussig for helpful discussions. We are grateful to R De Maria for kindly providing us with the TWR LucFluc+RFP plasmid construct and to Fernando Anjos-Afonso for providing us with some of the qPCR primers used here. This work was funded by Cancer Research UK (DB) and by European grant (contract No. 037632) to DB. AG, SP, EG and JV are supported by London Research Institute Cancer Research UK fellowships.

Author Contributions

AG and SP: designed experiments, performed research, analyzed data and wrote the paper; FL and EG: performed some of the experiments; JV: provided clinical data and performed screening for engraftment and phenotype of the LSC used; AF: performed research and analyzed data; TAL: provided AML samples; DB: designed experiments, performed research, analyzed data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Bonnet.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandillet, A., Park, S., Lassailly, F. et al. Heterogeneous sensitivity of human acute myeloid leukemia to β-catenin down-modulation. Leukemia 25, 770–780 (2011). https://doi.org/10.1038/leu.2011.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.17

Keywords

This article is cited by

Search

Quick links