Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Sequence analysis of 515 kinase genes in chronic lymphocytic leukemia

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  Google Scholar 

  2. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  3. Brown JR, Levine RL, Thompson C, Basile G, Gilliland DG, Freedman AS . Systematic genomic screen for tyrosine kinase mutations in CLL. Leukemia 2008; 22: 1966–1969.

    Article  CAS  PubMed  Google Scholar 

  4. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  PubMed  Google Scholar 

  5. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S . The protein kinase complement of the human genome. Science (New York, NY) 2002; 298: 1912–1934.

    Article  CAS  Google Scholar 

  6. Kujawski L, Ouillette P, Erba H, Saddler C, Jakubowiak A, Kaminski M et al. Genomic complexity identifies patients with aggressive chronic lymphocytic leukemia. Blood 2008; 112: 1993–2003.

    Article  CAS  PubMed  Google Scholar 

  7. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al. The genomic landscapes of human breast and colorectal cancers. Science (New York, NY) 2007; 318: 1108–1113.

    Article  CAS  Google Scholar 

  8. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  Google Scholar 

  9. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW et al. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res 2009; 69: 6660–6667.

    Article  CAS  PubMed  Google Scholar 

  10. Carter H, Samayoa J, Hruban RH, Karchin R . Prioritization of driver mutations in pancreatic cancer using cancer-specific high-throughput annotation of somatic mutations (CHASM). Cancer biol ther 2010; 10: 582–587.

    Article  CAS  PubMed  Google Scholar 

  11. Amit YaG D . Shape quantization and recognition with random trees. Neural Comput 1997; 9: 1545–1588.

    Article  Google Scholar 

  12. Breiman L . Random Forest. Machine Learning 2001; 45: 5–32.

    Article  Google Scholar 

  13. Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 2010; 38 (Database issue): D652–D657.

    Article  CAS  PubMed  Google Scholar 

  14. Backert S, Gelos M, Kobalz U, Hanski ML, Bohm C, Mann B et al. Differential gene expression in colon carcinoma cells and tissues detected with a cDNA array. Int J Cancer 1999; 82: 868–874.

    Article  CAS  PubMed  Google Scholar 

  15. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE . Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002; 418: 934.

    Article  CAS  PubMed  Google Scholar 

  16. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455: 1069–1075.

    Article  CAS  PubMed  Google Scholar 

  17. Garnett MJ, Rana S, Paterson H, Barford D, Marais R . Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol cell 2005; 20: 963–969.

    Article  CAS  PubMed  Google Scholar 

  18. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004; 116: 855–867.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Virginia and DK Ludwig Fund for Cancer Research, National Institutes of Health Grants CA136537 (SNM), CA135877 (RK), CA 43460 (BV), the Translational Research Program of the Leukemia and Lymphoma Society of America (SM), NSF Grant DBI 0845275 (RK), DOD NDSEG fellowship 32 CFR 168a (HC) and the University of Michigan′s Cancer Center Support Grant (5 P30 CA46592). We are grateful for services provided by the microarray core of the University of Michigan Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S N Malek.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Reis, M., Khoriaty, R. et al. Sequence analysis of 515 kinase genes in chronic lymphocytic leukemia. Leukemia 25, 1908–1910 (2011). https://doi.org/10.1038/leu.2011.163

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.163

This article is cited by

Search

Quick links