Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Immunophenotypic and gene expression analysis of monoclonal B-cell lymphocytosis shows biologic characteristics associated with good prognosis CLL

Abstract

Monoclonal B-cell lymphocytosis (MBL) is a hematologic condition wherein small B-cell clones can be detected in the blood of asymptomatic individuals. Most MBL have an immunophenotype similar to chronic lymphocytic leukemia (CLL), and ‘CLL-like’ MBL is a precursor to CLL. We used flow cytometry to identify MBL from unaffected members of CLL kindreds. We identified 101 MBL cases from 622 study subjects; of these, 82 individuals with MBL were further characterized. In all, 91 unique MBL clones were detected: 73 CLL-like MBL (CD5+CD20dimsIgdim), 11 atypical MBL (CD5+CD20+sIg+) and 7 CD5neg MBL (CD5negCD20+sIgneg). Extended immunophenotypic characterization of these MBL subtypes was performed, and significant differences in cell surface expression of CD23, CD49d, CD79b and FMC-7 were observed among the groups. Markers of risk in CLL such as CD38, ZAP70 and CD49d were infrequently expressed in CLL-like MBL, but were expressed in the majority of atypical MBL. Interphase cytogenetics was performed in 35 MBL cases, and del 13q14 was most common (22/30 CLL-like MBL cases). Gene expression analysis using oligonucleotide arrays was performed on seven CLL-like MBL, and showed activation of B-cell receptor associated pathways. Our findings underscore the diversity of MBL subtypes and further clarify the relationship between MBL and other lymphoproliferative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Shanafelt TD, Ghia P, Lanasa MC, Landgren O, Rawstron AC . Monoclonal B-cell lymphocytosis (MBL): biology, natural history and clinical management. Leukemia 2010; 24: 512–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marti GE, Rawstron AC, Ghia P, Hillmen P, Houlston RS, Kay N et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol 2005; 130: 325–332.

    Article  PubMed  Google Scholar 

  3. Shim YK, Middleton DC, Caporaso NE, Rachel JM, Landgren O, Abbasi F et al. Prevalence of monoclonal B-cell lymphocytosis: a systematic review. Cytometry B Clin Cytom 2010; 78 (Suppl 1): S10–S18.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rawstron AC, Green MJ, Kuzmicki A, Kennedy B, Fenton JA, Evans PA et al. Monoclonal B lymphocytes with the characteristics of ‘indolent’ chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood 2002; 100: 635–639.

    Article  CAS  PubMed  Google Scholar 

  5. Ghia P, Prato G, Scielzo C, Stella S, Geuna M, Guida G et al. Monoclonal CD5+ and CD5- B-lymphocyte expansions are frequent in the peripheral blood of the elderly. Blood 2004; 103: 2337–2342.

    Article  CAS  PubMed  Google Scholar 

  6. Nieto WG, Almeida J, Romero A, Teodosio C, Lopez A, Henriques AF et al. Increased frequency (12%) of circulating chronic lymphocytic leukemia-like B-cell clones in healthy subjects using a highly sensitive multicolor flow cytometry approach. Blood 2009; 114: 33–37.

    Article  CAS  PubMed  Google Scholar 

  7. Landgren O, Albitar M, Ma W, Abbasi F, Hayes RB, Ghia P et al. B-cell clones as early markers for chronic lymphocytic leukemia. N Engl J Med 2009; 360: 659–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rawstron AC, Bennett FL, O’Connor SJ, Kwok M, Fenton JA, Plummer M et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med 2008; 359: 575–583.

    Article  CAS  PubMed  Google Scholar 

  9. Shanafelt TD, Kay NE, Rabe KG, Call TG, Zent CS, Maddocks K et al. Brief report: natural history of individuals with clinically recognized monoclonal B-cell lymphocytosis compared with patients with Rai 0 chronic lymphocytic leukemia. J Clin Oncol 2009; 27: 3959–3963.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lanasa MC, Allgood SD, Volkheimer AD, Gockerman JP, Whitesides JF, Goodman BK et al. Single-cell analysis reveals oligoclonality among ‘low-count’ monoclonal B-cell lymphocytosis. Leukemia 2010; 24: 133–140.

    Article  CAS  PubMed  Google Scholar 

  11. Dagklis A, Fazi C, Sala C, Cantarelli V, Scielzo C, Massacane R et al. The immunoglobulin gene repertoire of low-count chronic lymphocytic leukemia (CLL)-like monoclonal B lymphocytosis is different from CLL: diagnostic implications for clinical monitoring. Blood 2009; 114: 26–32.

    Article  CAS  PubMed  Google Scholar 

  12. Goldin LR, Lanasa MC, Slager SL, Cerhan JR, Vachon CM, Strom SS et al. Common occurrence of monoclonal B-cell lymphocytosis among members of high-risk CLL families. Br J Haematol 2010; 151: 152–158.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fraumeni Jr JF, Vogel CL, DeVita VT . Familial chronic lymphocytic leukemia. Ann Intern Med 1969; 71: 279–284.

    Article  PubMed  Google Scholar 

  14. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  PubMed  Google Scholar 

  15. Damle RN, Ghiotto F, Valetto A, Albesiano E, Fais F, Yan XJ et al. B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 2002; 99: 4087–4093.

    Article  CAS  PubMed  Google Scholar 

  16. Damle RN, Temburni S, Calissano C, Yancopoulos S, Banapour T, Sison C et al. CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood 2007; 110: 3352–3359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ibrahim S, Keating M, Do KA, O’Brien S, Huh YO, Jilani I et al. CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood 2001; 98: 181–186.

    Article  CAS  PubMed  Google Scholar 

  18. Rassenti LZ, Jain S, Keating MJ, Wierda WG, Grever MR, Byrd JC et al. Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood 2008; 112: 1923–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weinberg JB, Volkheimer AD, Chen Y, Beasley BE, Jiang N, Lanasa MC et al. Clinical and molecular predictors of disease severity and survival in chronic lymphocytic leukemia. Am J Hematol 2007; 82: 1063–1070.

    Article  CAS  PubMed  Google Scholar 

  20. Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003; 101: 4944–4951.

    Article  CAS  PubMed  Google Scholar 

  21. Dohner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 1995; 85: 1580–1589.

    CAS  PubMed  Google Scholar 

  22. Dohner H, Stilgenbauer S, James MR, Benner A, Weilguni T, Bentz M et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 1997; 89: 2516–2522.

    CAS  PubMed  Google Scholar 

  23. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998; 102: 1515–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  25. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  26. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  27. Hamblin TJ, Orchard JA, Ibbotson RE, Davis Z, Thomas PW, Stevenson FK et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood 2002; 99: 1023–1029.

    Article  CAS  PubMed  Google Scholar 

  28. Shanafelt TD, Geyer SM, Bone ND, Tschumper RC, Witzig TE, Nowakowski GS et al. CD49d expression is an independent predictor of overall survival in patients with chronic lymphocytic leukaemia: a prognostic parameter with therapeutic potential. Br J Haematol 2008; 140: 537–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pascual V, Liu YJ, Magalski A, de Bouteiller O, Banchereau J, Capra JD . Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med 1994; 180: 329–339.

    Article  CAS  PubMed  Google Scholar 

  30. Klein U, Rajewsky K, Kuppers R . Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 1998; 188: 1679–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Efremov DG, Gobessi S, Longo PG . Signaling pathways activated by antigen-receptor engagement in chronic lymphocytic leukemia B-cells. Autoimmun Rev 2007; 7: 102–108.

    Article  CAS  PubMed  Google Scholar 

  33. Baskar S, Kwong KY, Hofer T, Levy JM, Kennedy MG, Lee E et al. Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin Cancer Res 2008; 14: 396–404.

    Article  CAS  PubMed  Google Scholar 

  34. Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE et al. Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci USA 2008; 105: 3047–3052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shanafelt TD, Kay NE, Jenkins G, Call TG, Zent CS, Jelinek DF et al. B-cell count and survival: differentiating chronic lymphocytic leukemia from monoclonal B-cell lymphocytosis based on clinical outcome. Blood 2009; 113: 4188–4196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rawstron AC, Shingles J, de Tute R, Bennett F, Jack AS, Hillmen P . Chronic lymphocytic leukaemia (CLL) and CLL-type monoclonal B-cell lymphocytosis (MBL) show differential expression of molecules involved in lymphoid tissue homing. Cytometry B Clin Cytom 2010; 78 (Suppl 1): S42–S46.

    Article  PubMed  Google Scholar 

  37. Rossi D, Sozzi E, Puma A, De Paoli L, Rasi S, Spina V et al. The prognosis of clinical monoclonal B cell lymphocytosis differs from prognosis of Rai 0 chronic lymphocytic leukaemia and is recapitulated by biological risk factors. Br J Haematol 2009; 146: 64–75.

    Article  PubMed  Google Scholar 

  38. Tam CS, Shanafelt TD, Wierda WG, Abruzzo LV, Van Dyke DL, O’Brien S et al. De novo deletion 17p13.1 chronic lymphocytic leukemia shows significant clinical heterogeneity: the M. D. Anderson and Mayo Clinic experience. Blood 2009; 114: 957–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morice WG, Kurtin PJ, Hodnefield JM, Shanafelt TD, Hoyer JD, Remstein ED et al. Predictive value of blood and bone marrow flow cytometry in B-cell lymphoma classification: comparative analysis of flow cytometry and tissue biopsy in 252 patients. Mayo Clin Proc 2008; 83: 776–785.

    Article  PubMed  Google Scholar 

  40. Goldin LR, Bjorkholm M, Kristinsson SY, Turesson I, Landgren O . Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin's lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica 2009; 94: 647–653.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Crowther-Swanepoel D, Corre T, Lloyd A, Gaidano G, Olver B, Bennett FL et al. Inherited genetic susceptibility to monoclonal B-cell lymphocytosis. Blood 2010; 116: 5957–5960.

    Article  CAS  PubMed  Google Scholar 

  42. Slager SL, Goldin LR, Strom SS, Lanasa MC, Spector LG, Rassenti L et al. Genetic susceptibility variants for chronic lymphocytic leukemia. Cancer Epidemiol Biomarkers Prev 2010; 19: 1098–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MC Lanasa is supported by the Duke Clinical Oncology Research Clinical Development Program (K12) and is a fellow of the Leukemia and Lymphoma Society of America. This research is supported by the Leukemia and Lymphoma Society of America, the Harold Bernstein Family Fund, the VA Research Service and grants from the National Institutes of Health (NCI R03 CA128030, NCI R01 CA95241 and NCI U01 CA118444). We thank the study research subjects for their willingness to participate in this study and the hematology–oncology nurses and physician assistants for their special help. Flow Cytometry was performed in the Duke Human Vaccine Institute Flow Cytometry Core Facility that is supported by the National Institutes of Health award AI-51445.

Author contributions

All authors reviewed and approved the paper. Designed research: MCLa. Performed research: MCLa and SDA. Contributed vital analytical tools: SSD and BKG. Contributed Genetic Epidemiology of CLL samples and data: MCLa, SLS, GEM, NEK, NJC, CAH, LRG, VJC, CMV, LGS, LZR, JFL, SSS, TGC, JRC and MG. Collected data: MCLa and SDA. Analyzed and interpreted data: MCLa, SDA, SSD, MCLa, SLS, KGR, SJA and CL. Wrote the paper: MCLa, JBW and NEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Lanasa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanasa, M., Allgood, S., Slager, S. et al. Immunophenotypic and gene expression analysis of monoclonal B-cell lymphocytosis shows biologic characteristics associated with good prognosis CLL. Leukemia 25, 1459–1466 (2011). https://doi.org/10.1038/leu.2011.117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.117

Keywords

This article is cited by

Search

Quick links