Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


COX-2-dependent PGE2 acts as a growth factor in mycosis fungoides (MF)


Cancer often originates from a site of persistent inflammation, and the mechanisms turning chronic inflammation into a driving force of carcinogenesis are intensely investigated. Cyclooxygenase-2 (COX-2) is an inducible key modulator of inflammation that carries out the rate-limiting step in prostaglandin synthesis. Aberrant COX-2 expression and prostaglandin E2 (PGE2) production have been implicated in tumorigenesis. In this study we show that COX-2 is ectopically expressed in malignant T-cell lines from patients with cutaneous T-cell lymphoma (CTCL) as well as in situ in lymphocytic cells in 21 out of 22 patients suffering from mycosis fungoides (MF) in plaque or tumor stage. COX-2 is not expressed in lymphocytes of 11 patients with patch-stage MF, whereas sporadic COX-2 staining of stromal cells is observed in the majority of patients. COX-2 expression correlates with a constitutive production of PGE2 in malignant T cells in vitro. These cells express prostaglandin receptors EP3 and EP4 and the receptor antagonist as well as small interfering RNA (siRNA) directed against COX-2, and specific COX-2 inhibitors strongly reduce their spontaneous proliferation. In conclusion, our data indicate that COX-2 mediated PGE2 exerts an effect as a tumor growth factor in MF.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4


  1. Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 2007; 110: 1713–1722.

    Article  CAS  PubMed  Google Scholar 

  2. Karenko L, Hahtola S, Ranki A . Molecular cytogenetics in the study of cutaneous T-cell lymphomas (CTCL). Cytogenet Genome Res 2007; 118: 353–361.

    Article  CAS  PubMed  Google Scholar 

  3. Diamandidou E, Cohen PR, Kurzrock R . Mycosis fungoides and Sezary syndrome. Blood 1996; 88: 2385–2409.

    CAS  PubMed  Google Scholar 

  4. Sors A, Jean-Louis F, Pellet C, Laroche L, Dubertret L, Courtois G et al. Down-regulating constitutive activation of the NF-kappaB canonical pathway overcomes the resistance of cutaneous T-cell lymphoma to apoptosis. Blood 2006; 107: 2354–2363.

    Article  CAS  PubMed  Google Scholar 

  5. Kang Y-J, Mbonye UR, DeLong C, Wada M, Smith W . Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation. Prog Lipid Res 2007; 46: 108–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harris RE . Cyclooxygenase-2 (COX-2) and the inflammogenesis of cancer. Subcell Biochem 2007; 42: 93–126.

    Article  PubMed  Google Scholar 

  7. Samuelsson B, Morgenstern R, Jakobsson PJ . Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 2007; 59: 207–224.

    Article  CAS  PubMed  Google Scholar 

  8. Sugimoto Y, Narumiya S . Prostaglandin E receptors. J Biol Chem 2007; 282: 11613–11617.

    Article  CAS  PubMed  Google Scholar 

  9. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 2009; 30: 377–386.

    Article  CAS  PubMed  Google Scholar 

  10. Bernard MP, Bancos S, Sime PJ, Phipps RP . Targeting cyclooxygenase-2 in hematological malignancies: rationale and promise. Curr Pharm Des 2008; 14: 2051–2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Katoh H, Hosono K, Ito Y, Suzuki T, Ogawa Y, Kubo H et al. COX-2 and prostaglandin EP3/EP4 signaling regulate the tumor stromal proangiogenic microenvironment via CXCL12-CXCR4 chemokine systems. Am J Pathol 2010; 176: 1469–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cuzick J, Otto F, Baron JA, Brown PH, Burn J, Greenwald P et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol 2009; 10: 501–507.

    Article  CAS  PubMed  Google Scholar 

  13. Woetmann A, Lovato P, Eriksen KW, Krejsgaard T, Labuda T, Zhang Q et al. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins. Blood 2007; 109: 3325–3332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaltoft K, Bisballe S, Dyrberg T, Boel E, Rasmussen PB, Thestrup-Pedersen K . Establishment of two continuous T-cell strains from a single plaque of a patient with mycosis fungoides. In Vitro Cell Dev Biol 1992; 28A (3 Part 1): 161–167.

    Article  CAS  PubMed  Google Scholar 

  15. Starkebaum G, Loughran Jr TP, Waters CA, Ruscetti FW . Establishment of an IL-2 independent, human T-cell line possessing only the p70 IL-2 receptor. Int J Cancer 1991; 49: 246–253.

    Article  CAS  PubMed  Google Scholar 

  16. Gootenberg JE, Ruscetti FW, Mier JW, Gazdar A, Gallo RC . Human cutaneous T cell lymphoma and leukemia cell lines produce and respond to T cell growth factor. J Exp Med 1981; 154: 1403–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Kneitz H, Eriksen KW, Lovato P et al. Ectopic expression of B-lymphoid kinase in cutaneous T-cell lymphoma. Blood 2009; 113: 5896–5904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rozen S, Skaletsky HJ . Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds). Methods in Molecular Biology, vol. 132: Bioinformatics Methods and Protocols. Humana Press: Totowa, NJ, 2000. pp 365–386.

    Google Scholar 

  19. Telford WG, King LE, Fraker PJ . Comparative evaluation of several DNA binding dyes in the detection of apoptosis-associated chromatin degradation by flow cytometry. Cytometry 1992; 13: 137–143.

    Article  CAS  PubMed  Google Scholar 

  20. Faour WH, Gomi K, Kennedy CRJ . PGE2 induces COX-2 expression in podocytes via the EP4 receptor through a PKA-independent mechanism. Cell Signal 2008; 20: 2156–2164.

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Chen W, Xie X, He Y, Bai X . Celecoxib inhibits tumor growth and angiogenesis in an orthotopic implantation tumor model of human colon cancer. Exp Oncol 2008; 30: 42–51.

    PubMed  Google Scholar 

  22. Du Y, Zhang S, Wang Z, Zhou W, Luan M, Yang X et al. Induction of apoptosis and cell cycle arrest by NS398 in oral squamous cell carcinoma cells via downregulation of E2 promoter-binding factor-1. Oncol Rep 2008; 20: 605–611.

    CAS  PubMed  Google Scholar 

  23. Goldenberg MM . Celecoxib, a selective cyclooxygenase-2 inhibitor for the treatment of rheumatoid arthritis and osteoarthritis. Clin Ther 1999; 21: 1497–1513; discussion 1427–1428.

    Article  CAS  PubMed  Google Scholar 

  24. Pyrko P, Kardosh A, Schönthal AH . Celecoxib transiently inhibits cellular protein synthesis. Biochem Pharmacol 2008; 75: 395–404.

    Article  CAS  PubMed  Google Scholar 

  25. Arico S, Pattingre S, Bauvy C, Gane P, Barbat A, Codogno P et al. Celecoxib induces apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J Biol Chem 2002; 277: 27613–27621.

    Article  CAS  PubMed  Google Scholar 

  26. Kim EJ, Hess S, Richardson SK, Newton S, Showe LC, Benoit BM et al. Immunopathogenesis and therapy of cutaneous T cell lymphoma. J Clin Invest 2005; 115: 798–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Souza Pereira R . Selective cyclooxygenase-2 (COX-2) inhibitors used for preventing or regressing cancer. Recent Pat Anticancer Drug Discov 2009; 4: 157–163.

    Article  PubMed  Google Scholar 

Download references


This work was supported in part by the Danish Research Councils, the Danish Cancer Society (Kræftens Bekæmpelse), the Lundbeck Foundation, the Novo Nordic Foundation, the AP Møller Foundation for the Advancement of Medical Science (Fonden til Lægevidenskabenskabene Fremme), the Neye Foundation (Neye Fonden), the Danish Foundation for Advanced Technology (Højteknologifonden) and the Beckett Foundation (Beckett Fonden).

Author contributions:

KLMK, AW, JCB and NØ designed the research; KLMK, AW and CSK performed the research; KLMK, AW, CSK, BL, TK, KWE, QZ, MAW, CG, ER, JCB and NØ analyzed data; and KLMK, JCB, MAW, NØ and AW wrote the paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A Woetmann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kopp, K., Kauczok, C., Lauenborg, B. et al. COX-2-dependent PGE2 acts as a growth factor in mycosis fungoides (MF). Leukemia 24, 1179–1185 (2010).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • COX-2
  • prostaglandin
  • CTCL
  • diagnosis
  • proliferation

This article is cited by


Quick links