Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Competition between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associated with a progressively altered cellular distribution in MGUS vs myeloma

Abstract

Disappearance of normal bone marrow (BM) plasma cells (PC) predicts malignant transformation of monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM) into symptomatic multiple myeloma (MM). The homing, behavior and survival of normal PC, but also CD34+ hematopoietic stem cells (HSC), B-cell precursors, and clonal PC largely depends on their interaction with stromal cell-derived factor-1 (SDF-1) expressing, potentially overlapping BM stromal cell niches. Here, we investigate the distribution, phenotypic characteristics and competitive migration capacity of these cell populations in patients with MGUS, SMM and MM vs healthy adults (HA) aged >60 years. Our results show that BM and peripheral blood (PB) clonal PC progressively increase from MGUS to MM, the latter showing a slightly more immature immunophenotype. Of note, such increased number of clonal PC is associated with progressive depletion of normal PC, B-cell precursors and CD34+ HSC in the BM, also with a parallel increase in PB. In an ex vivo model, normal PC, B-cell precursors and CD34+ HSC from MGUS and SMM, but not MM patients, were able to abrogate the migration of clonal PC into serial concentrations of SDF-1. Overall, our results show that progressive competition and replacement of normal BM cells by clonal PC is associated with more advanced disease in patients with MGUS, SMM and MM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kyle R, Therneau T, Rajkumar S, Larson D, Plevak M, Offord J et al. Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 2006; 354: 1362–1369.

    Article  CAS  PubMed  Google Scholar 

  2. Weber D, Dimopoulos M, Moulopoulos L, Delasalle K, Smith T, Alexanian R . Prognostic features of asymptomatic multiple myeloma. Br J Haematol 1997; 97: 810–814.

    Article  CAS  PubMed  Google Scholar 

  3. Kyle R, Therneau T, Rajkumar S, Offord J, Larson D, Plevak M et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 2002; 346: 564–569.

    Article  PubMed  Google Scholar 

  4. Cesana C, Klersy C, Barbarano L, Nosari A, Crugnola M, Pungolino E et al. Prognostic factors for malignant transformation in monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. J Clin Oncol 2002; 20: 1625–1634.

    Article  PubMed  Google Scholar 

  5. San Miguel JF, Gutierrez NC, Mateo G, Orfao A . Conventional diagnostics in multiple myeloma. Eur J Cancer 2006; 42: 1510–1519.

    Article  PubMed  Google Scholar 

  6. Kyle RA, Rajkumar SV . Multiple myeloma. N Engl J Med 2004; 351: 1860–1873.

    Article  CAS  PubMed  Google Scholar 

  7. Luque R, Brieva J, Moreno A, Manzanal A, Escribano L, Villarrubia J et al. Normal and clonal B lineage cells can be distinguished by their differential expression of B cell antigens and adhesion molecules in peripheral blood from multiple myeloma (MM) patients–diagnostic and clinical implications. Clin Exp Immunol 1998; 112: 410–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chandesris MO, Soulier J, Labaume S, Crinquette A, Repellini L, Chemin K et al. Detection and follow-up of fibroblast growth factor receptor 3 expression on bone marrow and circulating plasma cells by flow cytometry in patients with t(4;14) multiple myeloma. Br J Haematol 2007; 136: 609–614.

    Article  CAS  PubMed  Google Scholar 

  9. Rawstron AC, Owen RG, Davies FE, Johnson RJ, Jones RA, Richards SJ et al. Circulating plasma cells in multiple myeloma: characterization and correlation with disease stage. Br J Haematol 1997; 97: 46–55.

    Article  CAS  PubMed  Google Scholar 

  10. Nowakowski GS, Witzig TE, Dingli D, Tracz MJ, Gertz MA, Lacy MQ et al. Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma. Blood 2005; 106: 2276–2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schneider U, van LA, Huhn D, Serke S . Two subsets of peripheral blood plasma cells defined by differential expression of CD45 antigen. Br J Haematol 1997; 97: 56–64.

    Article  CAS  PubMed  Google Scholar 

  12. Billadeau D, Van NB, Kimlinger T, Kyle RA, Therneau TM, Greipp PR et al. Clonal circulating cells are common in plasma cell proliferative disorders: a comparison of monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and active myeloma. Blood 1996; 88: 289–296.

    CAS  PubMed  Google Scholar 

  13. Kumar S, Rajkumar S, Kyle R, Lacy M, Dispenzieri A, Fonseca R et al. Prognostic value of circulating plasma cells in monoclonal gammopathy of undetermined significance. J Clin Oncol 2005; 23: 5668–5674.

    Article  PubMed  Google Scholar 

  14. Witzig T, Kyle R, O’Fallon W, Greipp P . Detection of peripheral blood plasma cells as a predictor of disease course in patients with smouldering multiple myeloma. Br J Haematol 1994; 87: 266–272.

    Article  CAS  PubMed  Google Scholar 

  15. Kuehl WM, Bergsagel PL . Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002; 2: 175–187.

    Article  CAS  PubMed  Google Scholar 

  16. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004; 64: 1546–1558.

    Article  CAS  PubMed  Google Scholar 

  17. Fonseca R, Bailey R, Ahmann G, Rajkumar S, Hoyer J, Lust J et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002; 100: 1417–1424.

    CAS  PubMed  Google Scholar 

  18. Paiva B, Almeida J, Perez-Andres M, Mateo G, Lopez A, Rasillo A et al. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytometry B Clin Cytom 2010; 78: 239–252.

    PubMed  Google Scholar 

  19. Perez-Andres M, Almeida J, Martin-Ayuso M, Moro MJ, Martin-Nunez G, Galende J et al. Clonal plasma cells from monoclonal gammopathy of undetermined significance, multiple myeloma and plasma cell leukemia show different expression profiles of molecules involved in the interaction with the immunological bone marrow microenvironment. Leukemia 2005; 19: 449–455.

    Article  CAS  PubMed  Google Scholar 

  20. Ocqueteau M, Orfao A, Almeida J, Blade J, Gonzalez M, Garcia-Sanz R et al. Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am J Pathol 1998; 152: 1655–1665.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Perez-Persona E, Vidriales MB, Mateo G, Garcia-Sanz R, Mateos MV, de Coca AG et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood 2007; 110: 2586–2592.

    Article  CAS  PubMed  Google Scholar 

  22. Paiva B, Vidriales MB, Mateo G, Perez JJ, Montalban MA, Sureda A et al. The persistence of immunophenotypically normal residual bone marrow plasma cells at diagnosis identifies a good prognostic subgroup of symptomatic multiple myeloma patients. Blood 2009; 114: 4369–4372.

    Article  CAS  PubMed  Google Scholar 

  23. Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KG, Dorner T et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 2006; 6: 741–750.

    Article  CAS  PubMed  Google Scholar 

  24. Shapiro-Shelef M, Calame K . Regulation of plasma-cell development. Nat Rev Immunol 2005; 5: 230–242.

    Article  CAS  PubMed  Google Scholar 

  25. Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T . Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 2004; 20: 707–718.

    Article  CAS  PubMed  Google Scholar 

  26. Ma Q, Jones D, Springer TA . The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 1999; 10: 463–471.

    Article  CAS  PubMed  Google Scholar 

  27. Nie Y, Waite J, Brewer F, Sunshine MJ, Littman DR, Zou YR . The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. J Exp Med 2004; 200: 1145–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perez-Andres M, Paiva B, Nieto WG, Caraux A, Schmitz A, Almeida J et al. Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. Cytometry B Clin Cytom 2010; 78 (Suppl 1): S47–S60.

    Article  PubMed  Google Scholar 

  29. Foudi A, Jarrier P, Zhang Y, Wittner M, Geay JF, Lecluse Y et al. Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4−/− chimeric mice. Blood 2006; 107: 2243–2251.

    Article  CAS  PubMed  Google Scholar 

  30. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    Article  CAS  PubMed  Google Scholar 

  31. Serke S, Sauberlich S, Huhn D . Multiparameter flow-cytometrical quantitation of circulating CD34(+)-cells: correlation to the quantitation of circulating haemopoietic progenitor cells by in vitro colony-assay. Br J Haematol 1991; 77: 453–459.

    Article  CAS  PubMed  Google Scholar 

  32. Caraux A, Klein B, Paiva B, Bret C, Schmitz A, Fuhler GM et al. Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138− and CD138+ plasma cells. Haematologica 2010; 95: 1016–1020.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mayack SR, Shadrach JL, Kim FS, Wagers AJ . Systemic signals regulate ageing and rejuvenation of blood stem cell niches. Nature 2010; 463: 495–500.

    Article  CAS  PubMed  Google Scholar 

  34. Corre J, Planat-Benard V, Corberand JX, Pénicaud L, Casteilla L, Laharrague P . Human bone marrow adipocytes support complete myeloid and lymphoid differentiation from human CD34 cells. Br J Haematol 2004; 127: 344–347.

    Article  PubMed  Google Scholar 

  35. Caers J, Deleu S, Belaid Z, De Raeve H, Van Valckenborgh E, De Bruyne E et al. Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia 2007; 21: 1580–1584.

    Article  CAS  PubMed  Google Scholar 

  36. International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003; 121: 749–757.

  37. Nieto WG, Almeida J, Romero A, Teodosio C, Lopez A, Henriques AF et al. Increased frequency (12%) of circulating chronic lymphocytic leukemia-like B-cell clones in healthy subjects using a highly sensitive multicolor flow cytometry approach. Blood 2009; 114: 33–37.

    Article  CAS  PubMed  Google Scholar 

  38. Paiva B, Vidriales MB, Cervero J, Mateo G, Perez JJ, Montalban MA et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 2008; 112: 4017–4023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matarraz S, Lopez A, Barrena S, Fernandez C, Jensen E, Flores J et al. The immunophenotype of different immature, myeloid and B-cell lineage-committed CD34+ hematopoietic cells allows discrimination between normal/reactive and myelodysplastic syndrome precursors. Leukemia 2008; 22: 1175–1183.

    Article  CAS  PubMed  Google Scholar 

  40. van Lochem EG, van der Velden VH, Wind HK, te Marvelde JG, Westerdaal NA, van Dongen JJ . Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B Clin Cytom 2004; 60: 1–13.

    Article  CAS  PubMed  Google Scholar 

  41. Kyle RA, Rajkumar SV . Epidemiology of the plasma-cell disorders. Best Pract Res Clin Haematol 2007; 20: 637–664.

    Article  CAS  PubMed  Google Scholar 

  42. Mei HE, Yoshida T, Sime W, Hiepe F, Thiele K, Manz RA et al. Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood 2009; 113: 2461–2469.

    Article  CAS  PubMed  Google Scholar 

  43. Rawstron A, Barrans S, Blythe D, Davies F, English A, Pratt G et al. Distribution of myeloma plasma cells in peripheral blood and bone marrow correlates with CD56 expression. Br J Haematol 1999; 104: 138–143.

    Article  CAS  PubMed  Google Scholar 

  44. Frasca D, Landin A, Riley R, Blomberg B . Mechanisms for decreased function of B cells in aged mice and humans. J Immunol 2008; 180: 2741–2746.

    Article  CAS  PubMed  Google Scholar 

  45. Isaksson E, Bjorkholm M, Holm G, Johansson B, Nilsson B, Mellstedt H et al. Blood clonal B-cell excess in patients with monoclonal gammopathy of undetermined significance (MGUS): association with malignant transformation. Br J Haematol 1996; 92: 71–76.

    Article  CAS  PubMed  Google Scholar 

  46. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al. Characterization of clonogenic multiple myeloma cells. Blood 2004; 103: 2332–2336.

    Article  CAS  PubMed  Google Scholar 

  47. Pilarski LM, Hipperson G, Seeberger K, Pruski E, Coupland RW, Belch AR . Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice. Blood 2000; 95: 1056–1065.

    CAS  PubMed  Google Scholar 

  48. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008; 68: 190–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cooperative Research Thematic Cancer Network (RTICs; RD06/0020/0006, RD06/0020/0035 and G03/136), MM Jevitt, SL firm, Instituto de Salud Carlos III/ Subdirección General de Investigación Sanitaria (FIS: PI060339; 02/0905; 01/0089/01-02; PS09/01897), Consejería de Sanidad and Conserjería de Educacion (GR37), Junta de Castilla y León, Valladolid, Spain (557/A/10) and from MSCNET European strep (N°E06005FF).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to A Orfao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paiva, B., Pérez-Andrés, M., Vídriales, MB. et al. Competition between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associated with a progressively altered cellular distribution in MGUS vs myeloma. Leukemia 25, 697–706 (2011). https://doi.org/10.1038/leu.2010.320

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.320

Keywords

This article is cited by

Search

Quick links