Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10

Abstract

The European LeukemiaNet (ELN), workpackage 10 (WP10) was designed to deal with diagnosis matters using morphology and immunophenotyping. This group aimed at establishing a consensus on the required reagents for proper immunophenotyping of acute leukemia and lymphoproliferative disorders. Animated discussions within WP10, together with the application of the Delphi method of proposals circulation, quickly led to post-consensual immunophenotyping panels for disorders on the ELN website. In this report, we established a comprehensive description of these panels, both mandatory and complementary, for both types of clinical conditions. The reason for using each marker, sustained by relevant literature information, is provided in detail. With the constant development of immunophenotyping techniques in flow cytometry and related software, this work aims at providing useful guidelines to perform the most pertinent exploration at diagnosis and for follow-up, with the best cost benefit in diseases, the treatment of which has a strong impact on health systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. http://www.leukemia-net.org/content/diagnostics/diagnostics (last accessed 20 November 2010).

  2. Béné MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995; 9: 1783–1786.

    PubMed  Google Scholar 

  3. Moreau EJ, Matutes E, A'Hern RP, Morilla AM, Morilla RM, Owusu-Ankomah KA et al. Improvement of the chronic lymphocytic leukemia scoring system with the monoclonal antibody SN8 (CD79b). Am J Clin Pathol 1997; 108: 378–382.

    CAS  Article  PubMed  Google Scholar 

  4. Dunphy CH . Contribution of flow cytometric immunophenotyping to the evaluation of tissues with suspected lymphoma? Cytometry 2000; 42: 296–306.

    CAS  PubMed  Article  Google Scholar 

  5. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J et al. The World Health Organization classification of neoplasms of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting—Airlie House, Virginia, November, 1997. Hematol J 2000; 1: 53–66.

    CAS  PubMed  Article  Google Scholar 

  6. Béné MC, Kaeda JS . How and why minimal residual disease studies are necessary in leukemia: a review from WP10 and WP12 of the European Leukaemia Net. Haematologica 2009; 94: 1135–1150.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. eds WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC: Lyon, France, 2008.

    Google Scholar 

  8. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    CAS  PubMed  Article  Google Scholar 

  9. Casasnovas RO, Slimane FK, Garand R, Faure GC, Campos L, Deneys V et al. Immunological classification of acute myeloblastic leukemias: relevance to patient outcome. Leukemia 2003; 17: 515–527.

    CAS  PubMed  Article  Google Scholar 

  10. Lucio P, Gaipa G, van Lochem EG, van Wering ER, Porwit-MacDonald A, Faria T et al. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. Leukemia 2001; 15: 1185–1192.

    CAS  PubMed  Article  Google Scholar 

  11. Porwit-MacDonald A, Bjorklund E, Lucio P, van Lochem EG, Mazur J, Parreira A et al. BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of Tcell acute lymphoblastic leukemia (T-ALL). Leukemia 2000; 14: 816–825.

    CAS  PubMed  Article  Google Scholar 

  12. Béné MC, Bernier M, Casasnovas RO, Castoldi G, Doekharan D, van der Holt B et al. Myeloid leukaemia M0: haematological, immunophenotypic and cytogenetic characteristics and their prognostic significance: an analysis in 241 patients. Br J Haematol 2001; 113: 737–745.

    Article  PubMed  Google Scholar 

  13. Tallman MS . Relevance of pathologic classifications and diagnosis of acute myeloid leukemia to clinical trials and clinical practice. Cancer Treat Res 2004; 121: 45–67.

    PubMed  Article  Google Scholar 

  14. Paietta E . Expression of cell-surface antigens in acute promyelocytic leukaemia. Best Pract Res Clin Haematol 2003; 16: 369–385.

    CAS  PubMed  Article  Google Scholar 

  15. Domingo-Claros A, Larriba I, Rozman M, Irriguible D, Vallespí T, Aventin A et al. Acute erythroid neoplastic proliferations. A biological study based on 62 patients. Haematologica 2002; 87: 148–153.

    PubMed  Google Scholar 

  16. Duchayne E, Fenneteau O, Pages MP, Sainty D, Arnoulet C, Dastugue N et al. Groupe Francais d′Hematologie Cellulaire; Groupe Francais de Cytogenetique Hematologique. Acute megakaryoblastic leukaemia: a national clinical and biological study of 53 adult and childhood cases by the Groupe Francais d'Hematologie Cellulaire (GFHC). Leuk Lymphoma 2003; 44: 49–58.

    CAS  PubMed  Article  Google Scholar 

  17. Jacob MC, Chaperot L, Mossuz P, Feuillard J, Valensi F, Leroux D et al. CD4+ CD56+ lineage negative malignancies: a new entity developed from malignant early plasmacytoid dendritic cells. Haematologica 2003; 88: 941–955.

    PubMed  Google Scholar 

  18. Béné MC, Feuillard J, Jacob MC . Groupe d'Etude Immunologique des Leucemies. Plasmacytoid dendritic cells: from the plasmacytoid T-cell to type 2 dendritic cells CD4+CD56+ malignancies. Semin Hematol 2003; 40: 257–266.

    PubMed  Article  CAS  Google Scholar 

  19. Garnache-Ottou F, Feuillard J, Ferrand C, Biichle S, Trimoreau F, Seilles E et al. GOELAMS and GEIL study. Extended diagnostic criteria for plasmacytoid dendritic cell leukaemia. Br J Haematol 2009; 145: 624–636.

    CAS  PubMed  Article  Google Scholar 

  20. Duchayne E, Demur C, Rubie H, Robert A, Dastugue N . Diagnosis of acute basophilic leukemia. Leuk Lymphoma 1999; 32: 269–278.

    CAS  PubMed  Article  Google Scholar 

  21. Valent P, Samorapoompichit P, Sperr WR, Horny HP, Lechner K . Myelomastocytic leukemia: myeloid neoplasm characterized by partial differentiation of mast cell-lineage cells. Hematol J 2002; 3: 90–94.

    PubMed  Article  Google Scholar 

  22. Lacombe F, Durrieu F, Briais A, Dumain P, Belloc F, Bascans E et al. Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia. Leukemia 1997; 11: 1878–1886.

    CAS  PubMed  Article  Google Scholar 

  23. Borowitz MJ, Guenther KL, Shults KE, Stelzer GT . Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol 1993; 100: 534–540.

    CAS  PubMed  Article  Google Scholar 

  24. Lacombe F, Arnoulet C, Maynadié M, Lippert E, Luquet I, Pigneux A et al. Early clearance of peripheral blasts measured by flow cytometry during the first week of AML induction therapy as a new independent prognostic factor: a GOELAMS study. Leukemia 2009; 23: 350–357.

    CAS  PubMed  Article  Google Scholar 

  25. Arnoulet C, Béné MC, Durrieu F, Feuillard J, Fossat C, Husson B et al. Four- and five-color flow cytometry analysis of leukocyte differentiation pathways in normal bone marrow: a reference document based on a systematic approach by the GTLLF and GEIL. Cytometry B 2010; 78: 4–10.

    Google Scholar 

  26. http://www.leukemia-net.org/content/diagnostics/diagnostics/flow_cytometry_atlas/last (last accessed 20 November 2010).

  27. Basso G, Buldini B, De Zen L, Orfao A . New methodologic approaches for immunophenotyping acute leukemias. Haematologica 2001; 86: 675–692.

    CAS  PubMed  Google Scholar 

  28. Stetler-Stevenson M, Davis B, Wood B, Braylan R . 2006 Bethesda international consensus conference on flow cytometric immunophenotyping of hematolymphoid neoplasia. Cytometry B 2007; 72 (Suppl 1): S3.

    Article  Google Scholar 

  29. Craig FE, Foon KA . Flow cytometric immunophenotyping for hematologic neoplasms. Blood 2008; 111: 3941–3967.

    CAS  PubMed  Article  Google Scholar 

  30. Karube K, Aoki R, Nomura Y, Yamamoto K, Shimizu K, Yoshida S et al. Usefulness of flow cytometry for differential diagnosis of precursor and peripheral T-cell and NK-cell lymphomas: analysis of 490 cases. Pathol Int 2008; 58: 89–97.

    PubMed  Article  Google Scholar 

  31. Al-Mawali A, Gillis D, Hissaria P, Lewis I . Incidence, sensitivity, and specificity of leukemia-associated phenotypes in acute myeloid leukemia using specific five-color multiparameter flow cytometry. Am J Clin Pathol 2008; 129: 934–945.

    PubMed  Article  Google Scholar 

  32. Sato N, Kishi K, Toba K, Watanabe K, Itoh H, Narita M et al. Simultaneous expression of CD13, CD22 and CD25 is related to the expression of Fc epsilon R1 in non-lymphoid leukemia. Leuk Res 2004; 28: 691–698.

    CAS  PubMed  Google Scholar 

  33. Béné MC, Faure GC . CD10 in acute leukemias. GEIL. Haematologica 1997; 82: 205–210.

    PubMed  Google Scholar 

  34. Herzog S, Reth M, Jumaa H . Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 2009; 9: 195–205.

    CAS  PubMed  Article  Google Scholar 

  35. Béné MC, Bernier M, Casasnovas RO, Castoldi G, Knapp W, Lanza F et al. The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemias and undifferentiated leukemias. The European Group for the Immunological Classification of Leukemias (EGIL). Blood 1998; 92: 596–599.

    PubMed  Article  Google Scholar 

  36. Maynadié M, Campos L, Moskovtchenko P, Sabido O, Aho S, Lenormand B et al. GEIL. Heterogenous expression of CD15 in acute lymphoblastic leukemia: a study of ten anti-CD15 monoclonal antibodies in 158 patients. Leuk Lymphoma 1997; 25: 135–143.

    PubMed  Article  Google Scholar 

  37. Betz SA, Foucar K, Head DR, Chen IM, Willman CL . False-positive flow cytometric platelet glycoprotein IIb/IIIa expression in myeloid leukemias secondary to platelet adherence to blasts. Blood 1992; 79: 2399–2403.

    CAS  PubMed  Article  Google Scholar 

  38. Babusíková O, Stevulová L . Analysis of surface and cytoplasmic immunoglobulin light/heavy chains by flow cytometry using a lysed-whole-blood technique: Implications for the differential diagnosis of B-cell malignancies. Neoplasma 2004; 51: 422–430.

    PubMed  Google Scholar 

  39. Gandemer V, Aubry M, Roussel M, Rio AG, de Tayrac M, Vallee A et al. CD9 expression can be used to predict childhood TEL/AML1-positive acute lymphoblastic leukemia: Proposal for an accelerated diagnostic flowchart. Leuk Res 2010; 34: 430–437.

    CAS  PubMed  Article  Google Scholar 

  40. Tiacci E, Pileri S, Orleth A, Pacini R, Tabarrini A, Frenguelli F et al. PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)-acute myelogenous leukemia. Cancer Res 2004; 64: 7399–7404.

    CAS  PubMed  Article  Google Scholar 

  41. Schott G, Sperling C, Schrappe M, Ratei R, Martin M, Meyer U et al. Immunophenotypic and clinical features of T-cell receptor (TCR) γδ+ T-lineage acute lymphoblastic leukemia (T-ALL). Br J Haematol 1998; 101: 753–755.

    CAS  PubMed  Article  Google Scholar 

  42. Strobl H, Knapp W . Myeloid cell-associated lysosomal proteins as flow cytometry markers for leukocyte lineage classification. J Biol Regul Homeost Agents 2004; 18: 335–339.

    CAS  PubMed  Google Scholar 

  43. Knapp W, Strobl H, Majdic O . Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis. Cytometry 1994; 18: 187–198.

    CAS  PubMed  Article  Google Scholar 

  44. Scholz W, Platzer B, Schumich A, Hocher B, Fritsch G, Knapp W et al. Initial human myeloid/dendritic cell progenitors identified by absence of myeloperoxidase protein expression. Exp Hematol 2004; 32: 270–276.

    CAS  PubMed  Article  Google Scholar 

  45. Scheinecker C, Strobl H, Fritsch G, Csmarits B, Krieger O, Majdic O et al. Granulomonocyte-associated lysosomal protein expression during in vitro expansion and differentiation of CD34+ hematopoietic progenitor cells. Blood 1995; 86: 4115–4123.

    CAS  PubMed  Article  Google Scholar 

  46. Strobl H, Scheinecker C, Riedl E, Csmarits B, Bello-Fernandez C, Pickl WF et al. Identification of CD68+lin− peripheral blood cells with dendritic precursor characteristics. J Immunol 1998; 161: 740–748.

    CAS  PubMed  Google Scholar 

  47. Wuchter C, Ratei R, Spahn G, Schoch C, Harbott J, Schnittger S et al. Impact of CD133 (AC133) and CD90 expression analysis for acute leukemia immunophenotyping. Haematologica 2001; 86: 154–161.

    CAS  PubMed  Google Scholar 

  48. Noto R, Lo Pardo C, Schiavone EM, Ferrara F, Manzo C, Vacca C et al. All-trans retinoic acid (ATRA) and the regulation of adhesion molecules in acute myeloid leukemia. Leuk Lymphoma 1996; 21: 201–209.

    PubMed  Article  Google Scholar 

  49. Lee JJ, Cho D, Chung IJ, Cho SH, Park KS, Park MR et al. CD34 expression is associated with poor clinical outcome in patients with acute promyelocytic leukemia. Am J Hematol 2003; 73: 149–153.

    CAS  PubMed  Article  Google Scholar 

  50. Braylan RC, Orfao A, Borowitz MJ, Davis BH . Optimal number of reagents required to evaluate hematolymphoid neoplasias: results of an international consensus meeting. Cytometry 2001; 46: 23–27.

    CAS  PubMed  Article  Google Scholar 

  51. Nakahata T, Okumura N . Cell surface antigen expression in human erythroid progenitors: erythroid and megakaryocytic markers. Leuk Lymphoma 1994; 13: 401–409.

    CAS  PubMed  Article  Google Scholar 

  52. Garand R, Duchayne E, Blanchard D, Robillard N, Kuhlein E, Fenneteau O et al. Minimally differentiated erythroleukaemia (AML M6 ‘variant’): a rare subset of AML distinct from AML M6. Groupe Francais d′Hematologie Cellulaire. Br J Haematol 1995; 90: 868–875.

    CAS  PubMed  Article  Google Scholar 

  53. Strobl H, Scheinecker C, Csmarits B, Majdic O, Knapp W . Flow cytometric analysis of intracellular CD68 molecule expression in normal and malignant haemopoiesis. Br J Haematol 1995; 90: 774–782.

    CAS  Article  PubMed  Google Scholar 

  54. Djokic M, Björklund E, Blennow E, Mazur J, Söderhäll S, Porwit A . Overexpression of CD123 correlates with the hyperdiploid genotype in acute lymphoblastic leukemia. Haematologica 2009; 94: 1016–1019.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 2009; 5: 31–42.

    CAS  Article  PubMed  Google Scholar 

  56. Han X, Jorgensen JL, Brahmandam A, Schlette E, Huh YO, Shi Y et al. Immunophenotypic study of basophils by multiparameter flow cytometry. Arch Pathol Lab Med 2008; 132: 813–819.

    PubMed  Article  Google Scholar 

  57. Wuchter C, Harbott J, Schoch C, Schnittger S, Borkhardt A, Karawajew L et al. Detection of acute leukemia cells with mixed lineage leukemia (MLL) gene rearrangements by flow cytometry using monoclonal antibody 7.1. Leukemia 2000; 14: 1232–1238.

    CAS  Article  PubMed  Google Scholar 

  58. Veltroni M, De Zen L, Sanzari MC, Maglia O, Dworzak MN, Ratei R et al. I-BFM-ALL-FCM-MRD-Study Group. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica 2003; 88: 1245–1252.

    PubMed  Google Scholar 

  59. Dworzak MN, Fröschl G, Printz D, Zen LD, Gaipa G, Ratei R et al. CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease. Leukemia 2004; 18: 703–708.

    CAS  PubMed  Article  Google Scholar 

  60. Morris JC, Waldmann TA . Antibody-based therapy of leukaemia. Expert Rev Mol Med 2009; 11: e29.

    PubMed  Article  PubMed Central  Google Scholar 

  61. Thomas DA, O'Brien S, Kantarjian HM . Monoclonal antibody therapy with rituximab for acute lymphoblastic leukemia. Hematol Oncol Clin N Am 2009; 23: 949–971.

    Article  Google Scholar 

  62. Angiolillo AL, Yu AL, Reaman G, Ingle AM, Secola R, Adamson PC . A phase II study of Campath-1H in children with relapsed or refractory acute lymphoblastic leukemia: a Children's Oncology Group report. Pediatr Blood Cancer 2009; 53: 978–983.

    PubMed  PubMed Central  Article  Google Scholar 

  63. Pagel JM, Gooley TA, Rajendran J, Fisher DR, Wilson WA, Sandmaier BM et al. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood 2009; 114: 5444–5453.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Stasi R . Gemtuzumab ozogamicin: an anti-CD33 immunoconjugate for the treatment of acute myeloid leukaemia. Expert Opin Biol Ther 2008; 8: 527–540.

    CAS  PubMed  Article  Google Scholar 

  65. Frankel AE, Powell BL, Hall PD, Case LD, Kreitman RJ . Phase I trial of a novel diphtheria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia. Clin Cancer Res 2002; 8: 1004–1013.

    CAS  PubMed  Google Scholar 

  66. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    Article  CAS  PubMed  Google Scholar 

  67. Stanciu-Herrera C, Morgan C, Herrera L . Anti-CD19 and anti-CD22 monoclonal antibodies increase the effectiveness of chemotherapy in pre-B acute lymphoblastic leukemia cell lines. Leuk Res 2008; 32: 625–632.

    CAS  PubMed  Article  Google Scholar 

  68. Ramage JG, Vallera DA, Black JH, Aplan PD, Kees UR, Frankel AE . The diphtheria toxin/urokinase fusion protein (DTAT) is selectively toxic to CD87 expressing leukemic cells. Leuk Res 2003; 27: 79–84.

    CAS  PubMed  Article  Google Scholar 

  69. Matutes E, Polliack A . Morphological and immunophenotypic features of chronic lymphocytic leukemia. Rev Clin Exp Hematol 2000; 4: 22–47.

    CAS  PubMed  Article  Google Scholar 

  70. Del Giudice I, Matutes E, Morilla R, Morilla A, Owusu-Ankomah K, Rafiq F et al. The diagnostic value of CD123 in B-cell disorders with hairy or villous lymphocytes. Haematologica 2004; 89: 303–308.

    PubMed  Google Scholar 

  71. Laane E, Tani E, Bjorklund E, Elmberger G, Everaus H, Skoog L et al. Flow cytometric immunophenotyping including Bcl-2 detection on fine needle aspirates in the diagnosis of reactive lymphadenopathy and non-Hodgkin's lymphoma. Cytometry B 2005; 64: 34–42.

    Article  Google Scholar 

  72. Matutes E . Chronic T-cell lymphoproliferative disorders. Rev Clin Exp Hematol 2002; 6: 401–420.

    PubMed  Article  Google Scholar 

  73. Lundell R, Hartung L, Hill S, Perkins SL, Bahler DW . T-cell large granular lymphocyte leukemias have multiple phenotypic abnormalities involving pan-T-cell antigens and receptors for MHC molecules. Am J Clin Pathol 2005; 124: 937–946.

    CAS  Article  PubMed  Google Scholar 

  74. Jorgensen JL . State of the art symposium: flow cytometry in the diagnosis of lymphoproliferative disorders by fine-needle aspiration. Cancer 2005; 105: 443–451.

    PubMed  Article  Google Scholar 

  75. Bettelheim P, Diem H, Nebe T . Flow cytometric typing of B-cell non Hodgkin lymphoma. Lab Med 2004; 28: 410–423.

    Google Scholar 

  76. McKenna RW, Asplund SL, Kroft SH . Immunophenotypic analysis of hematogones (B-lymphocyte precursors) and neoplastic lymphoblasts by 4-color flow cytometry. Leuk Lymphoma 2004; 45: 277–285.

    PubMed  Article  Google Scholar 

  77. Bataille R, Jégo G, Robillard N, Barillé-Nion S, Harousseau JL, Moreau P et al. The phenotype of normal, reactive and malignant plasma cells. Identification of ‘many and multiple myelomas’ and of new targets for myeloma therapy. Haematologica 2006; 91: 1234–1240.

    CAS  PubMed  Google Scholar 

  78. Bozzi F, Collini P, Aiello A, Barzanò E, Gambirasio F, Podda M et al. Flow cytometric phenotype of rhabdomyosarcoma bone marrow metastatic cells and its implication in differential diagnosis with neuroblastoma. Anticancer Res 2008; 28: 1565–1569.

    CAS  PubMed  Google Scholar 

  79. Jung G, Eisenmann JC, Thiébault S, Hénon P . Cell surface CD43 determination improves diagnostic precision in late B-cell diseases. Br J Haematol 2003; 120: 496–499.

    PubMed  Article  Google Scholar 

  80. Palumbo GA, Parrinello N, Fargione G, Cardillo K, Chiarenza A, Berretta S et al. CD200 expression may help in differential diagnosis between mantle cell lymphoma and B-cell chronic lymphocytic leukemia. Leuk Res 2009; 33: 1212–1216.

    CAS  PubMed  Article  Google Scholar 

  81. Jain P, Giustolisi GM, Atkinson S, Elnenaei MO, Morilla R, Owusu-Ankomah K et al. Detection of cyclin D1 in B cell lymphoproliferative disorders by flow cytometry. J Clin Pathol 2002; 55: 940–945.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Matutes E, Morilla R, Owusu-Ankomah K, Houliham A, Meeus P, Catovsky D . The immunophenotype of hairy cell leukemia (HCL). Proposal for a scoring system to distinguish HCL from B-cell disorders with hairy or villous lymphocytes. Leuk Lymphoma 1994; 14 (Suppl 1): 57–61.

    PubMed  Google Scholar 

  83. Rawstron AC, Villamor N, Ritgen M, Böttcher S, Ghia P, Zehnder JL et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia 2007; 21: 956–964.

    CAS  PubMed  Article  Google Scholar 

  84. Kern W, Dicker F, Schnittger S, Haferlach C, Haferlach T . Correlation of flow cytometrically determined expression of ZAP-70 using the SBZAP antibody with IgVH mutation status and cytogenetics in 1,229 patients with chronic lymphocytic leukemia. Cytometry B 2009; 76: 385–393.

    Article  CAS  Google Scholar 

  85. Salameire D, Le Bris Y, Fabre B, Fauconnier J, Solly F, Pernollet M et al. Efficient characterization of the TCR repertoire in lymph nodes by flow cytometry. Cytometry A 2009; 75: 743–751.

    CAS  PubMed  Article  Google Scholar 

  86. Kelemen K, Guitart J, Kuzel TM, Goolsby CL, Peterson LC . The usefulness of CD26 in flow cytometric analysis of peripheral blood in Sézary syndrome. Am J Clin Pathol 2008; 129: 146–156;.

    CAS  PubMed  Article  Google Scholar 

  87. Sokolowska-Wojdylo M, Wenzel J, Gaffal E, Steitz J, Roszkiewicz J, Bieber T et al. Absence of CD26 expression on skin-homing CLA+ CD4+ T lymphocytes in peripheral blood is a highly sensitive marker for early diagnosis and therapeutic monitoring of patients with Sézary syndrome. Clin Exp Dermatol 2005; 30: 702–706.

    CAS  PubMed  Article  Google Scholar 

  88. Stacchini A, Demurtas A, Aliberti S, Francia di Celle P, Godio L, Palestro G et al. The usefulness of flow cytometric CD10 detection in the differential diagnosis of peripheral T-cell lymphomas. Am J Clin Pathol 2007; 128: 854–864.

    PubMed  Article  Google Scholar 

  89. Lee PS, Lin CN, Chuang SS . Immunophenotyping of angioimmunoblastic T-cell lymphomas by multiparameter flowcytometry. Pathol Res Pract 2003; 199: 539–545.

    PubMed  Article  Google Scholar 

  90. Fromm JR, Thomas A, Wood BL . Flow cytometry can diagnose classical Hodgkin lymphoma in lymph nodes with high sensitivity and specificity. Am J Clin Pathol 2009; 131: 322–332.

    CAS  PubMed  Article  Google Scholar 

  91. Akiyama T, Okino T, Konishi H, Wani Y, Notohara K, Tsukayama C et al. CD8+, CD56+ (natural killer-like) T-cell lymphoma involving the small intestine with no evidence of enteropathy: clinicopathology and molecular study of five Japanese patients. Pathol Int 2008; 58: 626–634.

    CAS  Article  PubMed  Google Scholar 

  92. Fischer L, Hummel M, Burmeister T, Schwartz S, Thiel E . Skewed expression of natural-killer (NK)-associated antigens on lymphoproliferations of large granular lymphocytes (LGL). Hematol Oncol 2006; 24: 78–85.

    CAS  PubMed  Article  Google Scholar 

  93. Chiesa S, Tomasello E, Vivier E, Vély F . Coordination of activating and inhibitory signals in natural killer cells. Mol Immunol 2005; 42: 477–484.

    CAS  PubMed  Article  Google Scholar 

  94. Morris JC, Waldmann TA, Janik JE . Receptor-directed therapy of T-cell leukemias and lymphomas. J Immunotoxicol 2008; 5: 235–248.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to all WP10 participants for their input in fruitful discussions and consensual work. This work was supported by the European LeukemiaNet, Network of Excellence, 6th PCRDT by the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Béné.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Béné, M., Nebe, T., Bettelheim, P. et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10. Leukemia 25, 567–574 (2011). https://doi.org/10.1038/leu.2010.312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.312

Keywords

  • hematology
  • flow cytometry
  • immunophenotyping
  • lymphoproliferative disorders

This article is cited by

Search

Quick links