Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

The cyclin-dependent kinase inhibitor SNS-032 has single agent activity in AML cells and is highly synergistic with cytarabine

Abstract

SNS-032 (BMS-387032) is a selective cyclin-dependent kinase (CDK) inhibitor. In this study, we evaluated its effects on primary acute myeloid leukemia (AML) samples (n=87). In vitro exposure to SNS-032 for 48 h resulted in a mean LD50 of 139±203 nM; Cytarabine (Ara-C) was more than 35 times less potent in the same cohort. SNS-032-induced a dose-dependent increase in annexin V staining and caspase-3 activation. At the molecular level, SNS-032 induced a marked dephosphorylation of serine 2 and 5 of RNA polymerase (RNA Pol) II and inhibited the expression of CDK2 and CDK9 and dephosphorylated CDK7. Furthermore, the combination of SNS-032 and Ara-C showed remarkable synergy that was associated with reduced mRNA levels of the antiapoptotic genes XIAP, BCL2 and MCL1. In conclusion, SNS-032 is effective as a single agent and in combination with Ara-C in primary AML blasts. Treatment with Ara-C alone significantly induced the transcription of the antiapoptotic genes BCL2 and XIAP. In contrast, the combination of SNS-032 and Ara-C suppressed the transcription of BCL2, XIAP and MCL1. Therefore, the combination of SNS-032 and Ara-C may increase the sensitivity of AML cells to the cytotoxic effects of Ara-C by inhibiting the transcription of antiapoptotic genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kiyoi H, Naoe T . Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with FLT3 mutation. Int J Hematol 2006; 83: 301–308.

    Article  CAS  PubMed  Google Scholar 

  2. Sanz M, Burnett A, Lo-Coco F, Lowenberg B . FLT3 inhibition as a targeted therapy for acute myeloid leukemia. Curr Opin Oncol 2009; 21: 594–600.

    Article  CAS  PubMed  Google Scholar 

  3. Mesters RM, Padro T, Bieker R, Steins M, Kreuter M, Goner M et al. Stable remission after administration of the receptor tyrosine kinase inhibitor SU5416 in a patient with refractory acute myeloid leukemia. Blood 2001; 98: 241–243.

    Article  CAS  PubMed  Google Scholar 

  4. Giles FJ, Stopeck AT, Silverman LR, Lancet JE, Cooper MA, Hannah AL et al. SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 2003; 102: 795–801.

    Article  CAS  PubMed  Google Scholar 

  5. Mountzios G, Terpos E, Dimopoulos MA . Aurora kinases as targets for cancer therapy. Cancer Treat Rev 2008; 34: 175–182.

    Article  CAS  PubMed  Google Scholar 

  6. Wallenfang MR, Seydoux G . cdk-7 Is required for mRNA transcription and cell cycle progression in Caenorhabditis elegans embryos. Proc Natl Acad Sci USA 2002; 99: 5527–5532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shapiro GI . Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 2006; 24: 1770–1783.

    Article  CAS  PubMed  Google Scholar 

  8. Scrace SF, Kierstan P, Borgognoni J, Wang LZ, Denny S, Wayne J et al. Transient treatment with CDK inhibitors eliminates proliferative potential even when their abilities to evoke apoptosis and DNA damage are blocked. Cell Cycle 2008; 7: 3898–3907.

    Article  CAS  PubMed  Google Scholar 

  9. Maude SL, Enders GH . Cdk inhibition in human cells compromises chk1 function and activates a DNA damage response. Cancer Res 2005; 65: 780–786.

    CAS  PubMed  Google Scholar 

  10. Cai D, Latham Jr VM, Zhang X, Shapiro GI . Combined depletion of cell cycle and transcriptional cyclin-dependent kinase activities induces apoptosis in cancer cells. Cancer Res 2006; 66: 9270–9280.

    Article  CAS  PubMed  Google Scholar 

  11. Yu C, Rahmani M, Dai Y, Conrad D, Krystal G, Dent P et al. The lethal effects of pharmacological cyclin-dependent kinase inhibitors in human leukemia cells proceed through a phosphatidylinositol 3-kinase/Akt-dependent process. Cancer Res 2003; 63: 1822–1833.

    CAS  PubMed  Google Scholar 

  12. Grant S, Roberts JD . The use of cyclin-dependent kinase inhibitors alone or in combination with established cytotoxic drugs in cancer chemotherapy. Drug Resist Updat 2003; 6: 15–26.

    Article  CAS  PubMed  Google Scholar 

  13. Lolli G, Johnson LN . CAK-Cyclin-dependent activating kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 2005; 4: 572–577.

    Article  CAS  PubMed  Google Scholar 

  14. Larochelle S, Pandur J, Fisher RP, Salz HK, Suter B . Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity. Genes Dev 1998; 12: 370–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shuttleworth J . The regulation and functions of cdk7. Prog Cell Cycle Res 1995; 1: 229–240.

    Article  CAS  PubMed  Google Scholar 

  16. Chen R, Wierda WG, Chubb S, Hawtin RE, Fox JA, Keating MJ et al. Mechanism of action of SNS-032, a novel cyclin-dependent kinase inhibitor, in chronic lymphocytic leukemia. Blood 2009; 113: 4637–4645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dickson MA, Schwartz GK . Development of cell-cycle inhibitors for cancer therapy. Curr Oncol 2009; 16: 36–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ali MA, Choy H, Habib AA, Saha D . SNS-032 prevents tumor cell-induced angiogenesis by inhibiting vascular endothelial growth factor. Neoplasia 2007; 9: 370–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  20. White JC, Rathmell JP, Capizzi RL . Membrane transport influences the rate of accumulation of cytosine arabinoside in human leukemia cells. J Clin Invest 1987; 79: 380–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen R, Keating MJ, Gandhi V, Plunkett W . Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood 2005; 106: 2513–2519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu C, Rahmani M, Dai Y, Conrad D, Krystal G, Dent P et al. The lethal effects of pharmacological cyclin-dependent kinase inhibitors in human leukemia cells proceed through a phosphatidylinositol 3-kinase/Akt-dependent process. Cancer Res 2003; 63: 1822–1833.

    CAS  PubMed  Google Scholar 

  23. Rosato RR, Almenara JA, Kolla SS, Maggio SC, Coe S, Gimenez MS et al. Mechanism and functional role of XIAP and Mcl-1 down-regulation in flavopiridol/vorinostat antileukemic interactions. Mol Cancer Ther 2007; 6: 692–702.

    Article  CAS  PubMed  Google Scholar 

  24. Maung ZT, MacLean FR, Reid MM, Pearson AD, Proctor SJ, Hamilton PJ et al. The relationship between bcl-2 expression and response to chemotherapy in acute leukaemia. Br J Haematol 1994; 88: 105–109.

    Article  CAS  PubMed  Google Scholar 

  25. Karakas T, Maurer U, Weidmann E, Miething CC, Hoelzer D, Bergmann L . High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia. Ann Oncol 1998; 9: 159–165.

    Article  CAS  PubMed  Google Scholar 

  26. Notarbartolo M, Cervello M, Dusonchet L, Cusimano A, D’Alessandro N . Resistance to diverse apoptotic triggers in multidrug resistant HL60 cells and its possible relationship to the expression of P-glycoprotein, Fas and of the novel anti-apoptosis factors IAP (inhibitory of apoptosis proteins). Cancer Lett 2002; 180: 91–101.

    Article  CAS  PubMed  Google Scholar 

  27. Carter BZ, Mak DH, Schober WD, Dietrich MF, Pinilla C, Vassilev LT et al. Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5. Blood 2008; 111: 3742–3750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lubbert M, Muller-Tidow C, Hofmann WK, Koeffler HP . Advances in the treatment of acute myeloid leukemia: from chromosomal aberrations to biologically targeted therapy. J Cell Biochem 2008; 104: 2059–2070.

    Article  PubMed  Google Scholar 

  29. Estey E . New drugs in acute myeloid leukemia. Semin Oncol 2008; 35: 439–448.

    Article  CAS  PubMed  Google Scholar 

  30. Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 2008; 22: 915–931.

    Article  CAS  PubMed  Google Scholar 

  31. Buolamwini JK . Cell cycle molecular targets in novel anticancer drug discovery. Curr Pharm Des 2000; 6: 379–392.

    Article  CAS  PubMed  Google Scholar 

  32. Raje N, Kumar S, Hideshima T, Roccaro A, Ishitsuka K, Yasui H et al. Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood 2005; 106: 1042–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tirado OM, Mateo-Lozano S, Notario V . Roscovitine is an effective inducer of apoptosis of Ewing's sarcoma family tumor cells in vitro and in vivo. Cancer Res 2005; 65: 9320–9327.

    Article  CAS  PubMed  Google Scholar 

  34. Hui AB, Yue S, Shi W, Alajez NM, Ito E, Green SR et al. Therapeutic efficacy of seliciclib in combination with ionizing radiation for human nasopharyngeal carcinoma. Clin Cancer Res 2009; 15: 3716–3724.

    Article  CAS  PubMed  Google Scholar 

  35. Drexler HG, Quentmeier H, MacLeod R . Cell line models of leukemia. Drug Discov Today: Disease Models 2005; 2: 51–56.

    CAS  Google Scholar 

  36. Moon JH, Sohn SK, Lee MH, Jang JH, Kim K, Jung CW et al. BCL2 gene polymorphism could predict the treatment outcomes in acute myeloid leukemia patients. Leuk Res 2010; 34: 166–172.

    Article  CAS  PubMed  Google Scholar 

  37. Kornblau SM, Thall PF, Estrov Z, Walterscheid M, Patel S, Theriault A et al. The prognostic impact of BCL2 protein expression in acute myelogenous leukemia varies with cytogenetics. Clin Cancer Res 1999; 5: 1758–1766.

    CAS  PubMed  Google Scholar 

  38. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 2000; 6: 1796–1803.

    CAS  PubMed  Google Scholar 

  39. Konopleva M, Tari AM, Estrov Z, Harris D, Xie Z, Zhao S et al. Liposomal Bcl-2 antisense oligonucleotides enhance proliferation, sensitize acute myeloid leukemia to cytosine-arabinoside, and induce apoptosis independent of other antiapoptotic proteins. Blood 2000; 95: 3929–3938.

    CAS  PubMed  Google Scholar 

  40. Ibrado AM, Huang Y, Fang G, Liu L, Bhalla K . Overexpression of Bcl-2 or Bcl-xL inhibits Ara-C-induced CPP32/Yama protease activity and apoptosis of human acute myelogenous leukemia HL-60 cells. Cancer Res 1996; 56: 4743–4748.

    CAS  PubMed  Google Scholar 

  41. Misra RN, Xiao HY, Kim KS, Lu S, Han WC, Barbosa SA et al. N-(cycloalkylamino)acyl-2-aminothiazole inhibitors of cyclin-dependent kinase 2. N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4- piperidinecarboxamide (BMS-387032), a highly efficacious and selective antitumor agent. J Med Chem 2004; 47: 1719–1728.

    Article  CAS  PubMed  Google Scholar 

  42. Byrd JC, Lin TS, Dalton JT, Wu D, Phelps MA, Fischer B et al. Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 2007; 109: 399–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heath EI, Bible K, Martell RE, Adelman DC, Lorusso PM . A phase 1 study of SNS-032 (formerly BMS-387032), a potent inhibitor of cyclin-dependent kinases 2, 7 and 9 administered as a single oral dose and weekly infusion in patients with metastatic refractory solid tumors. Invest New Drugs 2008; 26: 59–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Walsby.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsby, E., Lazenby, M., Pepper, C. et al. The cyclin-dependent kinase inhibitor SNS-032 has single agent activity in AML cells and is highly synergistic with cytarabine. Leukemia 25, 411–419 (2011). https://doi.org/10.1038/leu.2010.290

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.290

Keywords

This article is cited by

Search

Quick links