Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Minimal Residual Disease

Monitoring of WT1 expression in PB and CD34+ donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning

Abstract

Relapse of malignant disease remains the major complication in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) after hematopoietic cell transplantation (HCT) with reduced-intensity conditioning (RIC). In this study, we investigated the predictive value of disease-specific markers (DSMs), donor chimerism (DC) analysis of unsorted (UDC) or CD34+ sorted cells and Wilms’ tumor gene 1 (WT1) expression. Eighty-eight patients with AML or MDS were monitored after allogenic HCT following 2 Gy total-body irradiation with (n=84) or without (n=4) fludarabine 3 × 30 mg/m2, followed by cyclosporin A and mycophenolate mofetil. DSMs were determined by fluorescence in situ hybridization (FISH) and WT1 expression by real-time polymerase chain reaction. Chimerism analysis was performed on unsorted or CD34+ sorted cells, by FISH or short tandem repeat polymerase chain reaction. Twenty-one (24%) patients relapsed within 4 months after HCT. UDC, CD34+ DC and WT1 expression were each significant predictors of relapse with sensitivities ranging from 53 to 79% and specificities of 82–91%. Relapse within 28 days was excluded almost entirely on the basis of WT1 expression combined with CD34+ DC kinetics. Monitoring of WT1 expression and CD34+ DC predict relapse of AML and MDS after RIC-HCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Storb R . Can reduced-intensity allogeneic transplantation cure older adults with AML? Best Pract Res Clin Haematol 2007; 20: 85–90.

    Article  PubMed  Google Scholar 

  2. Niederwieser D, Lange T, Cross M, Basara N, Al-Ali H . Reduced intensity conditioning (RIC) haematopoietic cell transplants in elderly patients with AML. Best Pract Res Clin Haematol 2006; 19: 825–838.

    Article  PubMed  Google Scholar 

  3. Tauro S, Craddock C, Peggs K, Begum G, Mahendra P, Cook G et al. Allogeneic stem-cell transplantation using a reduced-intensity conditioning regimen has the capacity to produce durable remissions and long-term disease-free survival in patients with high-risk acute myeloid leukemia and myelodysplasia. J Clin Oncol 2005; 23: 9387–9393.

    Article  CAS  PubMed  Google Scholar 

  4. Hallemeier CL, Girgis MD, Blum WG, Brown RA, Khoury HJ, Devine SM et al. Long-term remissions in patients with myelodysplastic syndrome and secondary acute myelogenous leukemia undergoing allogeneic transplantation following a reduced intensity conditioning regimen of 550 cGy total body irradiation and cyclophosphamide. Biol Blood Marrow Transplant 2006; 12: 749–757.

    Article  CAS  PubMed  Google Scholar 

  5. Schmid C, Schleuning M, Schwerdtfeger R, Hertenstein B, Mischak-Weissinger E, Bunjes D et al. Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood 2006; 108: 1092–1099.

    Article  CAS  PubMed  Google Scholar 

  6. Hegenbart U, Niederwieser D, Sandmaier BM, Maris MB, Shizuru JA, Greinix H et al. Treatment for acute myelogenous leukemia by low-dose, total-body, irradiation-based conditioning and hematopoietic cell transplantation from related and unrelated donors. J Clin Oncol 2006; 24: 444–453.

    Article  CAS  PubMed  Google Scholar 

  7. Al-Ali HK, Nehring C, Krahl R, Becker C, Leiblein S, Edelmann J et al. Donor CD34+ cell chimerism at day 28 and chronic graft-versus-host disease (GvHD) but not high-risk cytogenetics influence outcome of allogeneic hematopoetic cell transplantation (HCT) following reduced intensity conditioning (RIC) in patients with AML and MDS. ASH Annual Meeting Abstracts 2006; 108: 547.

    Google Scholar 

  8. Mielcarek M, Martin PJ, Maloney DG, Storb R, Sandmaier BM . Outcomes among patients with recurrent high-risk hematologic malignancy after nonmyeloablative versus myeloablative allogeneic hematopoietic cell transplantation. ASH Annual Meeting Abstracts 2006; 108: 262.

    Google Scholar 

  9. Lange T, Deininger M, Brand R, Hegenbart U, Al-Ali H, Krahl R et al. BCR-ABL transcripts are early predictors for hematological relapse in chronic myeloid leukemia after hematopoietic cell transplantation with reduced intensity conditioning. Leukemia 2004; 18: 1468–1475.

    Article  CAS  PubMed  Google Scholar 

  10. Kern W, Schoch C, Haferlach T, Schnittger S . Monitoring of minimal residual disease in acute myeloid leukemia. Crit Rev Oncol Hematol 2005; 56: 283–309.

    Article  PubMed  Google Scholar 

  11. Gozzetti A, Le Beau MM . Fluorescence in situ hybridization: uses and limitations. Semin Hematol 2000; 37: 320–333.

    Article  CAS  PubMed  Google Scholar 

  12. Thiede C . Diagnostic chimerism analysis after allogeneic stem cell transplantation: new methods and markers. Am J Pharmacogenom 2004; 4: 177–187.

    Article  CAS  Google Scholar 

  13. Dohner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 2005; 106: 3740–3746.

    Article  PubMed  Google Scholar 

  14. Gorello P, Cazzaniga G, Alberti F, Dell’Oro MG, Gottardi E, Specchia G et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia 2006; 20: 1103–1108.

    Article  CAS  PubMed  Google Scholar 

  15. Schnittger S, Schoch C, Kern W, Hiddemann W, Haferlach T . FLT3 length mutations as marker for follow-up studies in acute myeloid leukaemia. Acta Haematol 2004; 112: 68–78.

    Article  CAS  PubMed  Google Scholar 

  16. Scholl S, Krause C, Loncarevic IF, Muller R, Kunert C, Wedding U et al. Specific detection of Flt3 point mutations by highly sensitive real-time polymerase chain reaction in acute myeloid leukemia. J Lab Clin Med 2005; 145: 295–304.

    Article  CAS  PubMed  Google Scholar 

  17. Cilloni D, Saglio G . WT1 as a universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Haematol 2004; 112: 79–84.

    Article  CAS  PubMed  Google Scholar 

  18. Keilholz U, Menssen HD, Gaiger A, Menke A, Oji Y, Oka Y et al. Wilms’ tumour gene 1 (WT1) in human neoplasia. Leukemia 2005; 19: 1318–1323.

    Article  CAS  PubMed  Google Scholar 

  19. Ostergaard M, Olesen LH, Hasle H, Kjeldsen E, Hokland P . WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients—results from a single-centre study. Br J Haematol 2004; 125: 590–600.

    Article  CAS  PubMed  Google Scholar 

  20. Cilloni D, Renneville A, Hermitte F, Hills RK, Daly S, Jovanovic JV et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol 2009; 27: 5195–5201.

    Article  CAS  PubMed  Google Scholar 

  21. Weisser M, Kern W, Rauhut S, Schoch C, Hiddemann W, Haferlach T et al. Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia 2005; 19: 1416–1423.

    Article  CAS  PubMed  Google Scholar 

  22. Lapillonne H, Renneville A, Auvrignon A, Flamant C, Blaise A, Perot C et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol 2006; 24: 1507–1515.

    Article  CAS  PubMed  Google Scholar 

  23. Cilloni D, Messa F, Arruga F, Defilippi I, Gottardi E, Fava M et al. Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica 2008; 93: 921–924.

    Article  PubMed  Google Scholar 

  24. Osborne D, Frost L, Tobal K, Liu Yin JA . Elevated levels of WT1 transcripts in bone marrow harvests are associated with a high relapse risk in patients autografted for acute myeloid leukaemia. Bone Marrow Transplant 2005; 36: 67–70.

    Article  CAS  PubMed  Google Scholar 

  25. Ogawa H, Ikegame K, Kawakami M, Tamaki H . WT1 gene transcript assay for relapse in acute leukemia after transplantation. Leuk Lymphoma 2004; 45: 1747–1753.

    Article  CAS  PubMed  Google Scholar 

  26. Ogawa H, Tamaki H, Ikegame K, Soma T, Kawakami M, Tsuboi A et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood 2003; 101: 1698–1704.

    Article  CAS  PubMed  Google Scholar 

  27. Candoni A, Tiribelli M, Toffoletti E, Cilloni D, Chiarvesio A, Michelutti A et al. Quantitative assessment of WT1 gene expression after allogeneic stem cell transplantation is a useful tool for monitoring minimal residual disease in acute myeloid leukemia. Eur J Haematol 2009; 82: 61–68.

    Article  CAS  PubMed  Google Scholar 

  28. Niederwieser D, Maris M, Shizuru JA, Petersdorf E, Hegenbart U, Sandmaier BM et al. Low-dose total body irradiation (TBI) and fludarabine followed by hematopoietic cell transplantation (HCT) from HLA-matched or mismatched unrelated donors and postgrafting immunosuppression with cyclosporine and mycophenolate mofetil (MMF) can induce durable complete chimerism and sustained remissions in patients with hematological diseases. Blood 2003; 101: 1620–1629.

    Article  CAS  PubMed  Google Scholar 

  29. Bryant E, Martin PJ . Documentation of engraftment and characterization of chimerism following hematopoietic cell transplantation. In: Thomas ED, Blume KG, Forman SJ (eds). Hematopoietic Cell Transplantation, 2 edn. Boston, 1999, pp 197–206.

    Google Scholar 

  30. Bumm T, Muller C, Al-Ali HK, Krohn K, Shepherd P, Schmidt E et al. Emergence of clonal cytogenetic abnormalities in Ph− cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 2003; 101: 1941–1949.

    Article  CAS  PubMed  Google Scholar 

  31. Lange T, Niederwieser DW, Deininger MW . Residual disease in chronic myeloid leukemia after induction of molecular remission. N Engl J Med 2003; 349: 1483–1484.

    Article  CAS  PubMed  Google Scholar 

  32. Ihaka R, Gentleman R . R a language for data analysis and graphics. J Comp Graph Stat 1996; 5: 299–314.

    Google Scholar 

  33. Bornhauser M, Oelschlaegel U, Platzbecker U, Bug G, Lutterbeck K, Kiehl MG et al. Monitoring of donor chimerism in sorted CD34+ peripheral blood cells allows the sensitive detection of imminent relapse after allogeneic stem cell transplantation. Haematologica 2009; 94: 1613–1617.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bacher U, Kern W, Schoch C, Schnittger S, Hiddemann W, Haferlach T . Evaluation of complete disease remission in acute myeloid leukemia: a prospective study based on cytomorphology, interphase fluorescence in situ hybridization, and immunophenotyping during follow-up in patients with acute myeloid leukemia. Cancer 2006; 106: 839–847.

    Article  PubMed  Google Scholar 

  35. Mancini M, Cedrone M, Diverio D, Emanuel B, Stul M, Vranckx H et al. Use of dual-color interphase FISH for the detection of inv(16) in acute myeloid leukemia at diagnosis, relapse and during follow-up: a study of 23 patients. Leukemia 2000; 14: 364–368.

    Article  CAS  PubMed  Google Scholar 

  36. Zeiser R, Spyridonidis A, Wasch R, Ihorst G, Grullich C, Bertz H et al. Evaluation of immunomodulatory treatment based on conventional and lineage-specific chimerism analysis in patients with myeloid malignancies after myeloablative allogeneic hematopoietic cell transplantation. Leukemia 2005; 19: 814–821.

    Article  CAS  PubMed  Google Scholar 

  37. Nyvold CG, Stentoft J, Braendstrup K, Melsvik D, Moestrup SK, Juhl-Christensen C et al. Wilms’ tumor 1 mutation accumulated during therapy in acute myeloid leukemia: Biological and clinical implications. Leukemia 2006; 20: 2051–2054.

    Article  CAS  PubMed  Google Scholar 

  38. Gaidzik VI, Schlenk RF, Moschny S, Becker A, Bullinger L, Corbacioglu A et al. Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia (AML): A study of the German–Austrian AML Study Group (AMLSG). Blood 2009; 113: 4505–4511.

    Article  CAS  PubMed  Google Scholar 

  39. Bruggemann M, Raff T, Flohr T, Gokbuget N, Nakao M, Droese J et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood 2006; 107: 1116–1123.

    Article  PubMed  Google Scholar 

  40. Gyurkocza B, Storb R, Storer BE, Chauncey TR, Lange T, Shizuru JA et al. Nonmyeloablative allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia. J Clin Oncol 2010; 28: 2859–2867.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bethge WA, Storer BE, Maris MB, Flowers ME, Maloney DG, Chauncey TR et al. Relapse or progression after hematopoietic cell transplantation using nonmyeloablative conditioning: effect of interventions on outcome. Exp Hematol 2003; 31: 974–980.

    Article  PubMed  Google Scholar 

  42. Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A et al. Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 2009; 113: 6567–6571.

    Article  CAS  PubMed  Google Scholar 

  43. Cross M, Jaekel N, Krahl R, Junghanss C, Maschmeyer G, Tran T et al. Low levels of global (LINE) and CDH13 methylation at diagnosis and rapid clearance of marrow blasts correlate with a better haematological response to azacitidine in patients with newly diagnosed and refractory/relapsed AML not eligible for or resistant to chemotherapy: a multi-centre phase I/II-study of the East German Haematology and Oncology Study Group (OSHO). ASH Annual Meeting Abstracts 2009; 114: 2642.

    Google Scholar 

Download references

Acknowledgements

We thank Janet Bogardt, Dagmar Crohn, Christa Döring, Christina Franke, Christine Günther, Evelyn Hennig, Ines Kovacs, Rainer Krahl, Christel Müller and Scarlet Musiol for their excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Lange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, T., Hubmann, M., Burkhardt, R. et al. Monitoring of WT1 expression in PB and CD34+ donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning. Leukemia 25, 498–505 (2011). https://doi.org/10.1038/leu.2010.283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.283

Keywords

This article is cited by

Search

Quick links