Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Correlation between array-comparative genomic hybridization-defined genomic gains and losses and survival: identification of 1p31-32 deletion as a prognostic factor in myeloma

Abstract

In this study, we correlated array-comparative genomic hybridization-defined abnormalities with survival in two different cohorts of patients treated with therapy based on high-dose melphalan with autologous stem-cell transplantation (64 from the Mayo Clinic and 67 from the University of Arkansas Medical School) and identified that several regions of genomic gains and losses were significantly associated with poorer survival. Three noncontiguous survival relevant regions covering 1p31-33 and two noncontiguous regions covering 20p12.3-12.1 were common between the two datasets. The prognostic relevance of these hotspots was validated in an independent cohort using fluorescent in situ hybridization, which showed that 1p31-32 loss is significantly associated with shorter survival (24.5 months versus 40 months, log-rank P-value=0.01), whereas 20p12 loss has a trend toward shorter survival (26.3 months versus 40 months, log-rank P-value=0.06). On multivariate analysis, 1p31-32 loss is an independent prognostic factor. On further analysis, the prognostic impact of 1p31-32 loss is due to shortening of post-relapse survival as there is no impact on complete response rates and progression-free survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Kyle RA, Rajkumar SV . Multiple myeloma. Blood 2008; 111: 2962–2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004; 64: 1546–1558.

    Article  CAS  PubMed  Google Scholar 

  3. Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003; 101: 4569–4575.

    Article  CAS  PubMed  Google Scholar 

  4. Fonseca R, Van Wier SA, Chng WJ, Ketterling R, Lacy MQ, Dispenzieri A et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia 2006; 20: 2034–2040.

    Article  CAS  PubMed  Google Scholar 

  5. Avet-Loiseau H, Attal M, Moreau P, Charbonnel C, Garban F, Hulin C et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 2007; 109: 3489–3495.

    Article  CAS  PubMed  Google Scholar 

  6. Chang H, Qi C, Yi QL, Reece D, Stewart AK . p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood 2005; 105: 358–360.

    Article  CAS  PubMed  Google Scholar 

  7. Chang H, Qi X, Trieu Y, Xu W, Reader JC, Ning Y et al. Multiple myeloma patients with CKS1B gene amplification have a shorter progression-free survival post-autologous stem cell transplantation. Br J Haematol 2006; 135: 486–491.

    Article  CAS  PubMed  Google Scholar 

  8. Chang H, Sloan S, Li D, Zhuang L, Yi QL, Chen CI et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br J Haematol 2004; 125: 64–68.

    Article  PubMed  Google Scholar 

  9. Fassas AB, Spencer T, Sawyer J, Zangari M, Lee CK, Anaissie E et al. Both hypodiploidy and deletion of chromosome 13 independently confer poor prognosis in multiple myeloma. Br J Haematol 2002; 118: 1041–1047.

    Article  CAS  PubMed  Google Scholar 

  10. Shaughnessy J, Jacobson J, Sawyer J, McCoy J, Fassas A, Zhan F et al. Continuous absence of metaphase-defined cytogenetic abnormalities, especially of chromosome 13 and hypodiploidy, ensures long-term survival in multiple myeloma treated with total therapy I: interpretation in the context of global gene expression. Blood 2003; 101: 3849–3856.

    Article  CAS  PubMed  Google Scholar 

  11. Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C . Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 2001; 98: 2229–2238.

    Article  CAS  PubMed  Google Scholar 

  12. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003; 101: 1520–1529.

    Article  CAS  PubMed  Google Scholar 

  13. Zhan F, Sawyer J, Gupta S, Huang Y, Anaissie E, Xu H et al. Elevated expression of CKS1B at 1q21 is highly correlated with short survival in myeloma. Blood 2004; 104: 77a.

    Google Scholar 

  14. Gertz MA, Lacy MQ, Dispenzieri A, Greipp PR, Litzow MR, Henderson KJ et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005; 106: 2837–2840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai JL, Zandecki M, Mary JY, Bernardi F, Izydorczyk V, Flactif M et al. Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood 1995; 85: 2490–2497.

    CAS  PubMed  Google Scholar 

  16. Rajkumar SV, Fonseca R, Dewald GW, Therneau TM, Lacy MQ, Kyle RA et al. Cytogenetic abnormalities correlate with the plasma cell labeling index and extent of bone marrow involvement in myeloma. Cancer Genet Cytogenet 1999; 113: 73–77.

    Article  CAS  PubMed  Google Scholar 

  17. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12: 131–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carrasco DR, Tonon G, Huang Y, Zhang Y, Sinha R, Feng B et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 2006; 9: 313–325.

    Article  CAS  PubMed  Google Scholar 

  19. Largo C, Saez B, Alvarez S, Suela J, Ferreira B, Blesa D et al. Multiple myeloma primary cells show a highly rearranged unbalanced genome with amplifications and homozygous deletions irrespective of the presence of immunoglobulin-related chromosome translocations. Haematologica 2007; 92: 795–802.

    Article  CAS  PubMed  Google Scholar 

  20. Largo C, Alvarez S, Saez B, Blesa D, Martin-Subero JI, Gonzalez-Garcia I et al. Identification of overexpressed genes in frequently gained/amplified chromosome regions in multiple myeloma. Haematologica 2006; 91: 184–191.

    CAS  PubMed  Google Scholar 

  21. Ahmann GJ, Jalal SM, Juneau AL, Christensen ER, Hanson CA, Dewald GW et al. A novel three-color, clone-specific fluorescence in situ hybridization procedure for monoclonal gammopathies. Cancer Genet Cytogenet 1998; 101: 7–11.

    Article  CAS  PubMed  Google Scholar 

  22. Walker BA, Leone PE, Jenner MW, Li C, Gonzalez D, Johnson DC et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood 2006; 108: 1733–1743.

    Article  CAS  PubMed  Google Scholar 

  23. Smadja NV, Fruchart C, Isnard F, Louvet C, Dutel JL, Cheron N et al. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia 1998; 12: 960–969.

    Article  CAS  PubMed  Google Scholar 

  24. Chng WJ, Santana-Davila R, Van Wier SA, Ahmann GJ, Jalal SM, Bergsagel PL et al. Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IgH translocations. Leukemia 2006; 20: 807–813.

    Article  CAS  PubMed  Google Scholar 

  25. Qazilbash MH, Saliba RM, Ahmed B, Parikh G, Mendoza F, Ashraf N et al. Deletion of the short arm of chromosome 1 (del 1p) is a strong predictor of poor outcome in myeloma patients undergoing an autotransplant. Biol Blood Marrow Transplant 2007; 13: 1066–1072.

    Article  PubMed  Google Scholar 

  26. Wu KL, Beverloo B, Lokhorst HM, Segeren CM, van der Holt B, Steijaert MM et al. Abnormalities of chromosome 1p/q are highly associated with chromosome 13/13q deletions and are an adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Br J Haematol 2007; 136: 615–623.

    Article  CAS  PubMed  Google Scholar 

  27. Debes-Marun CS, Dewald GW, Bryant S, Picken E, Santana-Davila R, Gonzalez-Paz N et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 2003; 17: 427–436.

    Article  CAS  PubMed  Google Scholar 

  28. Chang H, Ning Y, Qi X, Yeung J, Xu W . Chromosome 1p21 deletion is a novel prognostic marker in patients with multiple myeloma. Br J Haematol 2007; 139: 51–54.

    Article  CAS  PubMed  Google Scholar 

  29. Dib A, Peterson TR, Raducha-Grace L, Zingone A, Zhan F, Hanamura I et al. Paradoxical expression of INK4c in proliferative multiple myeloma tumors: bi-allelic deletion vs increased expression. Cell Div 2006; 1: 23.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leone PE, Walker BA, Jenner MW, Chiecchio L, Dagrada G, Protheroe RK et al. Deletions of CDKN2C in multiple myeloma: biological and clinical implications. Clin Cancer Res 2008; 14: 6033–6041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shaughnessy Jr JD, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2006; 109: 2276–2284.

    Article  PubMed  Google Scholar 

  32. McAvoy S, Zhu Y, Perez DS, James CD, Smith DI . Disabled-1 is a large common fragile site gene, inactivated in multiple cancers. Genes Chromosomes Cancer 2008; 47: 165–174.

    Article  CAS  PubMed  Google Scholar 

  33. Her C, Zhao N, Wu X, Tompkins JD . MutS homologues hMSH4 and hMSH5: diverse functional implications in humans. Front Biosci 2007; 12: 905–911.

    Article  CAS  PubMed  Google Scholar 

  34. Lo Vasco VR, Calabrese G, Manzoli L, Palka G, Spadano A, Morizio E et al. Inositide-specific phospholipase c beta1 gene deletion in the progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 2004; 18: 1122–1126.

    Article  CAS  PubMed  Google Scholar 

  35. Stirewalt DL, Meshinchi S, Kopecky KJ, Fan W, Pogosova-Agadjanyan EL, Engel JH et al. Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosomes Cancer 2008; 47: 8–20.

    Article  CAS  PubMed  Google Scholar 

  36. Linderoth J, Eden P, Ehinger M, Valcich J, Jerkeman M, Bendahl PO et al. Genes associated with the tumour microenvironment are differentially expressed in cured versus primary chemotherapy-refractory diffuse large B-cell lymphoma. Br J Haematol 2008; 141: 423–432.

    Article  CAS  PubMed  Google Scholar 

  37. Dickson BC, Mulligan AM, Zhang H, Lockwood G, O′Malley FP, Egan SE et al. High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol 2007; 20: 685–693.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RF is a Clinical Investigator of the Damon Runyon Cancer Research Fund and is a Clinical Investigator at the Mayo Clinic. WJC is supported by NMRC Clinician Scientist Investigator award. JJK is supported by the Gene and Mary Lou Kurtz Fellowship in Multiple Myeloma Research. RF is also supported in part by the Donaldson Charitable fund Trust, grants R01 CA83724-01, SPORE P50, CA100707-01, and P01 CA62242 from the National Cancer Institute. Dr Fonseca is also supported by the grant CA015083 from the National Cancer Institute.

Author's Contribution

Wee J Chng performed experimental analysis and wrote the manuscript. Tae-Hoon Chung performed the data analysis. Scott Van Wier performed FISH experiments. Jonathan J Keats performed aCGH experiments. Angela Baker performed aCGH experiments. P Leif Bergsagel designed the study and approved the manuscript. Morie A Gertz contributed the validation dataset and performed the analysis. John Carpten designed the study and approved the manuscript. Rafael Fonseca designed the study and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Fonseca.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chng, W., Gertz, M., Chung, TH. et al. Correlation between array-comparative genomic hybridization-defined genomic gains and losses and survival: identification of 1p31-32 deletion as a prognostic factor in myeloma. Leukemia 24, 833–842 (2010). https://doi.org/10.1038/leu.2010.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.21

Keywords

This article is cited by

Search

Quick links