Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Infectious Medicine

Diagnosis of invasive fungal infections by a real-time panfungal PCR assay in immunocompromised pediatric patients

Abstract

Invasive fungal disease (IFD) is a life-threatening event in immunocompromised patients, and there is an urgent need for reliable screening methods facilitating rapid and broad detection of pathogenic fungi. We have established a two-reaction real-time PCR assay permitting highly sensitive detection of more than 80 fungal pathogens, covering a large spectrum of moulds, yeasts and Zygomycetes. To assess the clinical potential of the assay, more than 600 consecutive specimens from 125 pediatric patients carrying a high risk of IFD were analyzed. An excellent correlation between PCR positivity and the presence of proven, probable or possible fungal infection according to the European Organization for Research and Treatment of Cancer criteria was demonstrated, as revealed by the sensitivity of the assay of 96% (95% CI: 82–99%). The negative predictive value of the panfungal PCR assay presented was 98% (95% CI: 90–100%), while the specificity and the positive predictive value were 77% (95% CI: 66–85%) and 62% (95% CI: 47–75%), respectively. The results indicate that molecular screening of patients during febrile neutropenic episodes by the assay presented could help prevent unnecessary toxicity resulting from empirical antifungal treatment in individuals who may not be at risk of imminent fungal disease. Our observations raise the possibility that rapid species identification may be required to increase the positive predictive value for impending fungus-related disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Enoch DA, Ludlam HA, Brown NM . Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 2006; 55: 809–818.

    Article  CAS  Google Scholar 

  2. Kauffman CA . Fungal infections. Proc Am Thorac Soc 2006; 3: 35–40.

    Article  CAS  Google Scholar 

  3. Walsh TJ, Groll A, Hiemenz J, Fleming R, Roilides E, Anaissie E . Infections due to emerging and uncommon medically important fungal pathogens. Clin Microbiol Infect 2004; 10 (Suppl 1): 48–66.

    Article  Google Scholar 

  4. Warnock DW . Trends in the epidemiology of invasive fungal infections. Nippon Ishinkin Gakkai Zasshi 2007; 48: 1–12.

    Article  Google Scholar 

  5. Richardson M, Lass-Florl C . Changing epidemiology of systemic fungal infections. Clin Microbiol Infect 2008; 14 (Suppl 4): 5–24.

    Article  Google Scholar 

  6. Golan Y . Overview of transplant mycology. Am J Health Syst Pharm 2005; 62: S17–S21.

    Article  Google Scholar 

  7. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Bijie H, Dzierzanowska D et al. Results from the ARTEMIS disk global antifungal surveillance study, 1997 to 2007: 10.5-year analysis of susceptibilities of noncandidal yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 2009; 47: 117–123.

    Article  CAS  Google Scholar 

  8. Nucci M, Spector N, Bueno AP, Solza C, Perecmanis T, Bacha PC et al. Risk factors and attributable mortality associated with superinfections in neutropenic patients with cancer. Clin Infect Dis 1997; 24: 575–579.

    Article  CAS  Google Scholar 

  9. Rekha A, Kindo AJ, Ravi A . Fusarium solani in the post-transplant patient: an unusual fungus. Int J Low Extrem Wounds 2008; 7: 38–40.

    Article  Google Scholar 

  10. Jayamohan Y, Ribes JA . Pseudallescheriasis: a summary of patients from 1980-2003 in a tertiary care center. Arch Pathol Lab Med 2006; 130: 1843–1846.

    Google Scholar 

  11. Cortez KJ, Roilides E, Quiroz-Telles F, Meletiadis J, Antachopoulos C, Knudsen T et al. Infections caused by Scedosporium spp. Clin Microbiol Rev 2008; 21: 157–197.

    Article  CAS  Google Scholar 

  12. Malani AN, Kauffman CA . Changing epidemiology of rare mould infections: implications for therapy. Drugs 2007; 67: 1803–1812.

    Article  CAS  Google Scholar 

  13. Dunyach C, Bertout S, Phelipeau C, Drakulovski P, Reynes J, Mallie M . Detection and identification of Candida spp. in human serum by LightCycler(R) real-time polymerase chain reaction. Diagn Microbiol Infect Dis 2008; 60: 263–271.

    Article  CAS  Google Scholar 

  14. White PL, Shetty A, Barnes RA . Detection of seven Candida species using the Light-Cycler system. J Med Microbiol 2003; 52: 229–238.

    Article  Google Scholar 

  15. Costa C, Costa JM, Desterke C, Botterel F, Cordonnier C, Bretagne S . Real-time PCR coupled with automated DNA extraction and detection of galactomannan antigen in serum by enzyme-linked immunosorbent assay for diagnosis of invasive aspergillosis. J Clin Microbiol 2002; 40: 2224–2227.

    Article  CAS  Google Scholar 

  16. Kami M, Fukui T, Ogawa S, Kazuyama Y, Machida U, Tanaka Y et al. Use of real-time PCR on blood samples for diagnosis of invasive aspergillosis. Clin Infect Dis 2001; 33: 1504–1512.

    Article  CAS  Google Scholar 

  17. Baskova L, Landlinger C, Preuner S, Lion T . The Pan-AC assay: a single-reaction real-time PCR test for quantitative detection of a broad range of Aspergillus and Candida species. J Med Microbiol 2007; 56: 1167–1173.

    Article  CAS  Google Scholar 

  18. Jordanides NE, Allan EK, McLintock LA, Copland M, Devaney M, Stewart K et al. A prospective study of real-time panfungal PCR for the early diagnosis of invasive fungal infection in haemato-oncology patients. Bone Marrow Transplant 2005; 35: 389–395.

    Article  CAS  Google Scholar 

  19. Klingspor L, Jalal S . Molecular detection and identification of Candida and Aspergillus spp. from clinical samples using real-time PCR. Clin Microbiol Infect 2006; 12: 745–753.

    Article  CAS  Google Scholar 

  20. Schabereiter-Gurtner C, Selitsch B, Rotter ML, Hirschl AM, Willinger B . Development of novel real-time PCR assays for detection and differentiation of eleven medically important Aspergillus and Candida species in clinical specimens. J Clin Microbiol 2007; 45: 906–914.

    Article  CAS  Google Scholar 

  21. Vollmer T, Stormer M, Kleesiek K, Dreier J . Evaluation of novel broad-range real-time PCR assay for rapid detection of human pathogenic fungi in various clinical specimens. J Clin Microbiol 2008; 46: 1919–1926.

    Article  CAS  Google Scholar 

  22. Tolstrup N, Nielsen PS, Kolberg JG, Frankel AM, Vissing H, Kauppinen S . OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res 2003; 31: 3758–3762.

    Article  CAS  Google Scholar 

  23. Watzinger F, Suda M, Preuner S, Baumgartinger R, Ebner K, Baskova L et al. Real-time quantitative PCR assays for detection and monitoring of pathogenic human viruses in immunosuppressed pediatric patients. J Clin Microbiol 2004; 42: 5189–5198.

    Article  CAS  Google Scholar 

  24. Altmann DG, Machin D, Bryant TN, Gardner MJ . Statistics with Confidence, 2nd edn. BMJ Books, 2000.

    Google Scholar 

  25. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 2008; 46: 1813–1821.

    Article  Google Scholar 

  26. Hebart H, Loffler J, Reitze H, Engel A, Schumacher U, Klingebiel T et al. Prospective screening by a panfungal polymerase chain reaction assay in patients at risk for fungal infections: implications for the management of febrile neutropenia. Br J Haematol 2000; 111: 635–640.

    Article  CAS  Google Scholar 

  27. Boudewijns M, Verweij PE, Melchers WJ . Molecular diagnosis of invasive aspergillosis: the long and winding road. Future Microbiol 2006; 1: 283–293.

    Article  CAS  Google Scholar 

  28. Buchheidt D, Baust C, Skladny H, Ritter J, Suedhoff T, Baldus M et al. Detection of Aspergillus species in blood and bronchoalveolar lavage samples from immunocompromised patients by means of 2-step polymerase chain reaction: clinical results. Clin Infect Dis 2001; 33: 428–435.

    Article  CAS  Google Scholar 

  29. Cuenca-Estrella M, Meije Y, Diaz-Pedroche C, Gomez-Lopez A, Buitrago MJ, Bernal-Martinez L et al. Value of serial quantification of fungal DNA by a real-time PCR-based technique for early diagnosis of invasive Aspergillosis in patients with febrile neutropenia. J Clin Microbiol 2009; 47: 379–384.

    Article  CAS  Google Scholar 

  30. Mengoli C, Cruciani M, Barnes RA, Loeffler J, Donnelly JP . Use of PCR for diagnosis of invasive aspergillosis: systematic review and meta-analysis. Lancet Infect Dis 2009; 9: 89–96.

    Article  CAS  Google Scholar 

  31. White PL, Barton R, Guiver M, Linton CJ, Wilson S, Smith M et al. A consensus on fungal polymerase chain reaction diagnosis?: a United Kingdom-Ireland evaluation of polymerase chain reaction methods for detection of systemic fungal infections. J Mol Diagn 2006; 8: 376–384.

    Article  CAS  Google Scholar 

  32. White PL, Linton CJ, Perry MD, Johnson EM, Barnes RA . The evolution and evaluation of a whole blood polymerase chain reaction assay for the detection of invasive aspergillosis in hematology patients in a routine clinical setting. Clin Infect Dis 2006; 42: 479–486.

    Article  CAS  Google Scholar 

  33. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 2009; 460: 1117–1121.

    Article  CAS  Google Scholar 

  34. Pastor FJ, Guarro J . Alternaria infections: laboratory diagnosis and relevant clinical features. Clin Microbiol Infect 2008; 14: 734–746.

    Article  CAS  Google Scholar 

  35. Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, LaFe K, Yarfitz SL et al. Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. J Clin Microbiol 2000; 38: 2302–2310.

    CAS  Google Scholar 

  36. De Baere T, Claeys G, Swinne D, Verschraegen G, Muylaert A, Massonet C et al. Identification of cultured isolates of clinically important yeast species using fluorescent fragment length analysis of the amplified internally transcribed rRNA spacer 2 region (ITS2). BMC Microbiol 2002; 2: 21.

    Article  Google Scholar 

  37. Landlinger C, Preuner S, Willinger B, Haberpursch B, Racil Z, Mayer J et al. Species-specific identification of a wide range of clinically relevant fungal pathogens by the Luminex xMAPTM technology. J Clin Microbiol 2009; 47: 1063–1073.

    Article  CAS  Google Scholar 

  38. Turenne CY, Sanche SE, Hoban DJ, Karlowsky JA, Kabani AM . Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J Clin Microbiol 1999; 37: 1846–1851.

    CAS  Google Scholar 

  39. Das S, Brown TM, Kellar KL, Holloway BP, Morrison CJ . DNA probes for the rapid identification of medically important Candida species using a multianalyte profiling system. FEMS Immunol Med Microbiol 2006; 46: 244–250.

    Article  CAS  Google Scholar 

  40. Diaz MR, Fell JW . High-throughput detection of pathogenic yeasts of the genus trichosporon. J Clin Microbiol 2004; 42: 3696–3706.

    Article  CAS  Google Scholar 

  41. Boyanton Jr BL, Luna RA, Fasciano LR, Menne KG, Versalovic J . DNA pyrosequencing-based identification of pathogenic Candida species by using the internal transcribed spacer 2 region. Arch Pathol Lab Med 2008; 132: 667–674.

    Google Scholar 

  42. Putignani L, Paglia MG, Bordi E, Nebuloso E, Pucillo LP, Visca P . Identification of clinically relevant yeast species by DNA sequence analysis of the D2 variable region of the 25-28S rRNA gene. Mycoses 2008; 51: 209–227.

    Article  CAS  Google Scholar 

  43. Campa D, Tavanti A, Gemignani F, Mogavero CS, Bellini I, Bottari F et al. DNA microarray based on arrayed-primer extension technique for identification of pathogenic fungi responsible for invasive and superficial mycoses. J Clin Microbiol 2008; 46: 909–915.

    Article  CAS  Google Scholar 

  44. Spiess B, Seifarth W, Hummel M, Frank O, Fabarius A, Zheng C et al. DNA microarray-based detection and identification of fungal pathogens in clinical samples from neutropenic patients. J Clin Microbiol 2007; 45: 3743–3753.

    Article  CAS  Google Scholar 

  45. Zeng X, Kong F, Halliday C, Chen S, Lau A, Playford G et al. Reverse line blot hybridization assay for identification of medically important fungi from culture and clinical specimens. J Clin Microbiol 2007; 45: 2872–2880.

    Article  CAS  Google Scholar 

  46. Gangneux JP, Lavarde D, Bretagne S, Guiguen C, Gandemer V . Transient aspergillus antigenaemia: think of milk. Lancet 2002; 359: 1251.

    Article  Google Scholar 

  47. Steinbach WJ . Pediatric aspergillosis: disease and treatment differences in children. Pediatr Infect Dis J 2005; 24: 358–364.

    Article  Google Scholar 

  48. Murashige N, Kami M, Kishi Y, Fujisaki G, Tanosaki R . False-positive results of Aspergillus enzyme-linked immunosorbent assays for a patient with gastrointestinal graft-versus-host disease taking a nutrient containing soybean protein. Clin Infect Dis 2005; 40: 333–334.

    Article  Google Scholar 

  49. Adam O, Auperin A, Wilquin F, Bourhis JH, Gachot B, Chachaty E . Treatment with piperacillin-tazobactam and false-positive Aspergillus galactomannan antigen test results for patients with hematological malignancies. Clin Infect Dis 2004; 38: 917–920.

    Article  Google Scholar 

  50. Zandijk E, Mewis A, Magerman K, Cartuyvels R . False-positive results by the platelia Aspergillus galactomannan antigen test for patients treated with amoxicillin-clavulanate. Clin Vaccine Immunol 2008; 15: 1132–1133.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Austrian Center for Innovation and Technology (ZIT), the Austrian Science Fund (FWF; Project No. P16929-B13) and Fonds der Stadt Wien für innovative interdisziplinäre Krebsforschung. We are grateful to Pia Reindl for collecting clinical data relating to the patient specimens obtained from the St Anna Children's Hospital, Vienna. Furthermore, we want to thank Ulrike Pötschger for her help with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Lion.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landlinger, C., Preuner, S., Bašková, L. et al. Diagnosis of invasive fungal infections by a real-time panfungal PCR assay in immunocompromised pediatric patients. Leukemia 24, 2032–2038 (2010). https://doi.org/10.1038/leu.2010.209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.209

Keywords

This article is cited by

Search

Quick links