Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Original Articles

NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951

Abstract

Risk-adjusted treatment stratification in T-cell acute lymphoblastic leukemias (T-ALLs) is currently based only on early response to chemotherapy. We investigated the prognostic implication of hyperactivation of NOTCH pathway resulting from mutations of NOTCH1 or FBXW7 in children with T-ALL enrolled in EORTC-CLG trials. Overall, 80 out of 134 (60%) patients were NOTCH+ (NOTCH1 and/or FBXW7 mutated). Although clinical presentations were not significantly associated with NOTCH status, NOTCH+ patients showed a better early response to chemotherapy as compared with NOTCH− patients, according to the rate of poor pre-phase ‘responders’ (25% versus 44%; P=0.02) and the incidence of high minimal residual disease (MRD) levels (11% (7/62) versus 32% (10/31); P=0.01) at completion of induction. However, the outcome of NOTCH+ patients was similar to that of NOTCH− patients, with a 5-year event-free survival (EFS) of 73% and 70% (P=0.82), and 5-year overall survival of 82% and 79% (P=0.62), respectively. In patients with high MRD levels, the 5-year EFS rate was 0% (NOTCH+) versus 42% (NOTCH−), whereas in those with low MRD levels, the outcome was similar: 76% (NOTCH+) versus 78% (NOTCH−). The incidence of isolated central nervous system (CNS) relapses was relatively high in NOTCH1+ patients (8.3%), which could be related to a higher propensity of NOTCH+ leukemic blasts to target the CNS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  Google Scholar 

  2. Grabher C, von Boehmer H, Look AT . Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 2006; 6: 347–359.

    Article  CAS  Google Scholar 

  3. Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A . Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 2006; 20: 1496–1510.

    Article  CAS  Google Scholar 

  4. Aifantis I, Raetz E, Buonamici S . Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008; 8: 380–390.

    Article  CAS  Google Scholar 

  5. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  Google Scholar 

  6. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

    Article  CAS  Google Scholar 

  7. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  Google Scholar 

  8. Aster JC, Pear WS, Blacklow SC . Notch signaling in leukemia. Annu Rev Pathol 2008; 3: 587–613.

    Article  CAS  Google Scholar 

  9. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996; 183: 2283–2291.

    Article  CAS  Google Scholar 

  10. O'Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 2006; 107: 781–785.

    Article  CAS  Google Scholar 

  11. Aster JC, Xu L, Karnell FG, Patriub V, Pui JC, Pear WS . Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Mol Cell Biol 2000; 20: 7505–7515.

    Article  CAS  Google Scholar 

  12. Allman D, Karnell FG, Punt JA, Bakkour S, Xu L, Myung P et al. Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J Exp Med 2001; 194: 99–106.

    Article  CAS  Google Scholar 

  13. Buonamici S, Trimarchi T, Ruocco MG, Reavie L, Cathelin S, Mar BG et al. CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature 2009; 459: 1000–1004.

    Article  CAS  Google Scholar 

  14. Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E et al. Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem 2001; 276: 34371–34378.

    Article  CAS  Google Scholar 

  15. O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 2007; 204: 1813–1824.

    Article  CAS  Google Scholar 

  16. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 2007; 204: 1825–1835.

    Article  CAS  Google Scholar 

  17. Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 2007; 447: 966–971.

    Article  CAS  Google Scholar 

  18. Vilmer E, Suciu S, Ferster A, Bertrand Y, Cave H, Thyss A et al. Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Children Leukemia Cooperative Group. Leukemia 2000; 14: 2257–2266.

    Article  CAS  Google Scholar 

  19. Cave H, Suciu S, Preudhomme C, Poppe B, Robert A, Uyttebroeck A et al. Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood 2004; 103: 442–450.

    Article  CAS  Google Scholar 

  20. Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer—Childhood Leukemia Cooperative Group. N Engl J Med 1998; 339: 591–598.

    Article  CAS  Google Scholar 

  21. Cave H, Guidal C, Rohrlich P, Delfau MH, Broyart A, Lescoeur B et al. Prospective monitoring and quantitation of residual blasts in childhood acute lymphoblastic leukemia by polymerase chain reaction study of delta and gamma T-cell receptor genes. Blood 1994; 83: 1892–1902.

    CAS  Google Scholar 

  22. Guidal C, Vilmer E, Grandchamp B, Cave H . A competitive PCR-based method using TCRD, TCRG and IGH rearrangements for rapid detection of patients with high levels of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2002; 16: 762–764.

    Article  CAS  Google Scholar 

  23. Asnafi V, Radford-Weiss I, Dastugue N, Bayle C, Leboeuf D, Charrin C et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. Blood 2003; 102: 1000–1006.

    Article  CAS  Google Scholar 

  24. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  Google Scholar 

  25. Renneville A, Kaltenbach S, Clappier E, Collette S, Micol JB, Nelken B et al. Wilms tumor 1 (WT1) gene mutations in pediatric T-cell malignancies. Leukemia 2010; 24: 476–480.

    Article  CAS  Google Scholar 

  26. van Grotel M, Meijerink JP, van Wering ER, Langerak AW, Beverloo HB, Buijs-Gladdines JG et al. Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia 2008; 22: 124–131.

    Article  CAS  Google Scholar 

  27. Chiang MY, Xu L, Shestova O, Histen G, L'Heureux S, Romany C et al. Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. J Clin Invest 2008; 118: 3181–3194.

    Article  CAS  Google Scholar 

  28. Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009; 360: 2730–2741.

    Article  CAS  Google Scholar 

  29. Breit S, Stanulla M, Flohr T, Schrappe M, Ludwig WD, Tolle G et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood 2006; 108: 1151–1157.

    Article  CAS  Google Scholar 

  30. Asnafi V, Buzyn A, Le Noir S, Baleydier F, Simon A, Beldjord K et al. NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood 2009; 113: 3918–3924.

    Article  CAS  Google Scholar 

  31. Mansour MR, Sulis ML, Duke V, Foroni L, Jenkinson S, Koo K et al. Prognostic implications of NOTCH1 and FBXW7 mutations in adults with T-cell acute lymphoblastic leukemia treated on the MRC UKALLXII/ECOG E2993 protocol. J Clin Oncol 2009; 27: 4352–4356.

    Article  CAS  Google Scholar 

  32. Ferrando AA, Look AT . Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol 2003; 40: 274–280.

    Article  CAS  Google Scholar 

  33. Zuurbier L, Homminga I, Calvert V, te Winkel ML, Buijs-Gladdines JGCAM, Kooi C et al. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia 2010 (this issue).

  34. Zhu YM, Zhao WL, Fu JF, Shi JY, Pan Q, Hu J et al. NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res 2006; 12: 3043–3049.

    Article  CAS  Google Scholar 

  35. Malyukova A, Dohda T, von der Lehr N, Akhoondi S, Corcoran M, Heyman M et al. The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res 2007; 67: 5611–5616.

    Article  CAS  Google Scholar 

  36. Kox C, Zimmermann M, Stanulla M, Schrappe M, Ludwig WD, Köhler R et al. The favorable effect of activating NOTCH1 receptor mutations on long-term outcome in T-cell acute lymphoblastic leukemia can be separated from NOTCH pathway activation by FBXW7 loss of function. Leukemia 2010 (this issue).

  37. Bostrom BC, Sensel MR, Sather HN, Gaynon PS, La MK, Johnston K et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 2003; 101: 3809–3817.

    Article  CAS  Google Scholar 

  38. Mitchell CD, Richards SM, Kinsey SE, Lilleyman J, Vora A, Eden TO . Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br J Haematol 2005; 129: 734–745.

    Article  CAS  Google Scholar 

  39. Demarest RM, Ratti F, Capobianco AJ . It's T-ALL about Notch. Oncogene 2008; 27: 5082–5091.

    Article  CAS  Google Scholar 

  40. Remke M, Pfister S, Kox C, Toedt G, Becker N, Benner A et al. High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF-beta and PI3K-AKT pathways and deletions at 6q15-16.1 as a genomic marker for unfavorable early treatment response. Blood 2009; 114: 1053–1062.

    Article  CAS  Google Scholar 

  41. Deftos ML, He YW, Ojala EW, Bevan MJ . Correlating notch signaling with thymocyte maturation. Immunity 1998; 9: 777–786.

    Article  CAS  Google Scholar 

  42. Sade H, Krishna S, Sarin A . The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells. J Biol Chem 2004; 279: 2937–2944.

    Article  CAS  Google Scholar 

  43. Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, de Stanchina E et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 2009; 15: 50–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication was supported by Grant Nos. 5U10 CA11488-20 through 5U10 CA11488-39 from the National Cancer Institute (Bethesda, MD, USA), by TéléVie (Grant No. 7.4561.01), and by a donation from the Vlaamse Liga Tegen Kanker, the Belgian Federation against Cancer, the Kinderkankerfonds from Belgium, La Ligue Nationale Contre le Cancer from France and the EORTC Charitable Trust. Its content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Cancer Institute. We wish to thank the physicians who referred the patients reported in this paper and biologists who provided cytological, immunophenotypic and karyotype data. We particularly thank Marleen Bakkus (AZ-VUB, Brussels) for MRD studies, and Séraphine Rossi (EORTC headquarters, Brussels) for data management.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to H Cavé.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clappier, E., Collette, S., Grardel, N. et al. NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia 24, 2023–2031 (2010). https://doi.org/10.1038/leu.2010.205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.205

Keywords

This article is cited by

Search

Quick links