Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

LMP-420: a novel purine nucleoside analog with potent cytotoxic effects for CLL cells and minimal toxicity for normal hematopoietic cells

Abstract

B-cell chronic lymphocytic leukemia (CLL) is characterized by slow accumulation of malignant cells, which are supported in the microenvironment by cell–cell interactions and soluble cytokines such as tumor necrosis factor (TNF). We evaluated the effect of the small molecule TNF inhibitor LMP-420 on primary CLL cells. The mean concentration of LMP-420 required to induce 50% cytotoxicity (ED50) at 72 h was 245 n. LMP-420-induced time- and dose-dependent apoptosis, as shown by annexin V staining, caspase activation and DNA fragmentation. These changes were associated with decreased expression of anti-apoptotic proteins Mcl-1, Bcl-xL and Bcl-2. CLL cells from patients with poor prognostic indicators showed LMP-420 sensitivity equal to that for cells from patients with favorable characteristics. In addition, LMP-420 potentiated the cytotoxic effect of fludarabine and inhibited in vitro proliferation of stimulated CLL cells. Gene expression profiling indicated that the mechanism of action of LMP-420 may involve suppression of nuclear factor-κB and immune response pathways in CLL cells. LMP-420 had minimal effects on normal peripheral blood mononuclear cell, B- and T-cell function, and hematopoietic colony formation. Our data suggest that LMP-420 may be a useful treatment for CLL with negligible hematologic toxicities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wierda W, O’Brien S, Wen S, Faderl S, Garcia-Manero G, Thomas D et al. Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 4070–4078.

    Article  CAS  Google Scholar 

  2. Tam CS, O’Brien S, Wierda W, Kantarjian H, Wen S, Do K-A et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood 2008; 112: 975–980.

    Article  CAS  Google Scholar 

  3. Wadhwa PD, Morrison VA . Infectious complications of chronic lymphocytic leukemia. Semin Oncol 2006; 33: 240–249.

    Article  CAS  Google Scholar 

  4. Foa R, Massaia M, Cardona S, Tos AG, Bianchi A, Attisano C et al. Production of tumor necrosis factor-alpha by B-cell chronic lymphocytic leukemia cells: a possible regulatory role of TNF in the progression of the disease. Blood 1990; 76: 393–400.

    CAS  PubMed  Google Scholar 

  5. Digel W, Stefanic M, Schoniger W, Buck C, Raghavachar A, Frickhofen N et al. Tumor necrosis factor induces proliferation of neoplastic B cells from chronic lymphocytic leukemia. Blood 1989; 73: 1242–1246.

    CAS  PubMed  Google Scholar 

  6. Ferrajoli A, Keating MJ, Manshouri T, Giles FJ, Dey A, Estrov Z et al. The clinical significance of tumor necrosis factor-alpha plasma level in patients having chronic lymphocytic leukemia. Blood 2002; 100: 1215–1219.

    CAS  PubMed  Google Scholar 

  7. Hale L, Cianciolo G . Treatment of experimental colitis in mice with LMP-420, an inhibitor of TNF transcription. J Inflamm 2008; 5: 4.

    Article  Google Scholar 

  8. Haraguchi S, Day N, Kamchaisatian W, Beigier-Pompadre M, Stenger S, Tangsinmankong N et al. LMP-420, a small-molecule inhibitor of TNF-alpha, reduces replication of HIV-1 and mycobacterium tuberculosis in human cells. AIDS Res Therapy 2006; 3: 8.

    Article  Google Scholar 

  9. Woyach JA, Lin TS, Lucas MS, Heerema N, Moran ME, Cheney C et al. A phase I/II study of rituximab and etanercept in patients with chronic lymphocytic leukemia and small lymphocytic lymphoma. Leukemia 2009; 23: 912–918.

    Article  CAS  Google Scholar 

  10. Tsimberidou AM, Thomas D, O’Brien S, Andreeff M, Kurzrock R, Keating M et al. Recombinant human soluble tumor necrosis factor (TNF) receptor (p75) fusion protein Enbrel in patients with refractory hematologic malignancies. Cancer Chemother Pharmacol 2002; 50: 237–242.

    Article  CAS  Google Scholar 

  11. Weinberg JB, Volkheimer AD, Chen Y, Beasley BE, Jiang N, Lanasa MC et al. Clinical and molecular predictors of disease severity and survival in chronic lymphocytic leukemia. Am J Hematol 2007; 82: 1063–1070.

    Article  CAS  Google Scholar 

  12. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  Google Scholar 

  13. Adams DJ, Levesque MC, Weinberg JB, Smith KL, Flowers JL, Moore J et al. Nitric oxide enhancement of fludarabine cytotoxicity for B-CLL lymphocytes. Leukemia 2001; 15: 1852–1859.

    Article  CAS  Google Scholar 

  14. Friesen C, Herr I, Krammer PH, Debatin KM . Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat Med 1996; 2: 574–577.

    Article  CAS  Google Scholar 

  15. Thomas D, Folker S, Manuela K, Tobias D, Grayson BL, Hermann W et al. Immunostimulatory CpG-oligonucleotides induce functional high affinity IL-2 receptors on B-CLL cells: costimulation with IL-2 results in a highly immunogenic phenotype. Exp Hematol 2000; 28: 558–568.

    Article  Google Scholar 

  16. Johnson WE, Li C, Rabinovic A . Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007; 8: 118–127.

    Article  Google Scholar 

  17. Chang JT, Nevins JR . GATHER: a systems approach to interpreting genomic signatures. Bioinformatics 2006; 22: 2926–2933.

    Article  CAS  Google Scholar 

  18. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006; 439: 353–357.

    Article  CAS  Google Scholar 

  19. Wyllie AH, Kerr JF, Currie AR . Cell death: the significance of apoptosis. Int Rev Cytol 1980; 68: 251–306.

    Article  CAS  Google Scholar 

  20. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2777–2783.

    Article  CAS  Google Scholar 

  21. Reittie JE, Yong KL, Panayiotidis P, Hoffbrand AV . Interleukin-6 inhibits apoptosis and tumour necrosis factor induced proliferation of B-chronic lymphocytic leukaemia. Leuk Lymphoma 1996; 22: 83–90,, follow 186, color plate VI.

    Article  CAS  Google Scholar 

  22. Tangye SG, Raison RL . Human cytokines suppress apoptosis of leukaemic CD5+ B cells and preserve expression of bcl-2. Immunol Cell Biol 1997; 75: 127–135.

    Article  CAS  Google Scholar 

  23. Buschle M, Campana D, Carding SR, Richard C, Hoffbrand AV, Brenner MK . Interferon gamma inhibits apoptotic cell death in B cell chronic lymphocytic leukemia. J Exp Med 1993; 177: 213–218.

    Article  CAS  Google Scholar 

  24. Grdisa M . Influence of CD40 ligation on survival and apoptosis of B-CLL cells in vitro. Leuk Res 2003; 27: 951–956.

    Article  CAS  Google Scholar 

  25. Luqman M, Klabunde S, Lin K, Georgakis GV, Cherukuri A, Holash J et al. The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells. Blood 2008; 112: 711–720.

    Article  CAS  Google Scholar 

  26. Schattner EJ, Mascarenhas J, Reyfman I, Koshy M, Woo C, Friedman SM et al. Chronic lymphocytic leukemia B cells can express CD40 ligand and demonstrate T-cell type costimulatory capacity. Blood 1998; 91: 2689–2697.

    CAS  Google Scholar 

  27. Chiorazzi N . Cell proliferation and death: forgotten features of chronic lymphocytic leukemia B cells. Best Pract Res Clin Haematol 2007; 20: 399–413.

    Article  CAS  Google Scholar 

  28. Longo PG, Laurenti L, Gobessi S, Petlickovski A, Pelosi M, Chiusolo P et al. The Akt signaling pathway determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease. Leukemia 2006; 21: 110–120.

    Article  Google Scholar 

  29. Li X, Bu X, Lu B, Avraham H, Flavell RA, Lim B . The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol Cell Biol 2002; 22: 1158–1171.

    Article  CAS  Google Scholar 

  30. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137: 1062–1075.

    Article  CAS  Google Scholar 

  31. Furman RR, Asgary Z, Mascarenhas JO, Liou H-C, Schattner EJ . Modulation of NF-{kappa}B activity and apoptosis in chronic. J Immunol 2000; 164: 2200–2206.

    Article  CAS  Google Scholar 

  32. Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 2003; 198: 1043–1055.

    Article  CAS  Google Scholar 

  33. Jeremias I, Kupatt C, Baumann B, Herr I, Wirth T, Debatin KM . Inhibition of nuclear factor kappaB activation attenuates apoptosis resistance in lymphoid cells. Blood 1998; 91: 4624–4631.

    CAS  Google Scholar 

  34. Pepper C, Hewamana S, Brennan P, Fegan C . NF-kappaB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncol 2009; 5: 1027–1037.

    Article  CAS  Google Scholar 

  35. Pickering BM, de Mel S, Lee M, Howell M, Habens F, Dallman CL et al. Pharmacological inhibitors of NF-kappaB accelerate apoptosis in chronic lymphocytic leukaemia cells. Oncogene 2007; 26: 1166–1177.

    Article  CAS  Google Scholar 

  36. Van Den Neste E, Bontemps F, Delacauw A, Cardoen S, Louviaux I, Scheiff JM et al. Potentiation of antitumor effects of cyclophosphamide derivatives in B-chronic lymphocytic leukemia cells by 2-chloro-2′-deoxyadenosine. Leukemia 1999; 13: 918–925.

    Article  CAS  Google Scholar 

  37. Schwanen C, Hecker T, Hubinger G, Wolfle M, Rittgen W, Bergmann L et al. In vitro evaluation of bendamustine induced apoptosis in B-chronic lymphocytic leukemia. Leukemia 2002; 16: 2096–2105.

    Article  CAS  Google Scholar 

  38. Silber R, Degar B, Costin D, Newcomb EW, Mani M, Rosenberg CR et al. Chemosensitivity of lymphocytes from patients with B-cell chronic lymphocytic leukemia to chlorambucil, fludarabine, and camptothecin analogs. Blood 1994; 84: 3440–3446.

    CAS  PubMed  Google Scholar 

  39. Morabito F, Stelitano C, Callea I, Filangeri M, Oliva B, Sculli G et al. In vitro sensitivity of chronic lymphocytic leukemia B-cells to fludarabine, 2-chlorodeoxyadenosine and chlorambucil: correlation with clinico-hematological and immunophenotypic features. Haematologica 1996; 81: 224–231.

    CAS  PubMed  Google Scholar 

  40. Johnston JB, Paul JT, Neufeld NJ, Haney N, Kropp DM, Hu X et al. Role of myeloid cell factor-1 (Mcl-1) in chronic lymphocytic leukemia. Leuk Lymphoma 2004; 45: 2017–2027.

    Article  CAS  Google Scholar 

  41. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 1998; 91: 3379–3389.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health, the Leukemia and Lymphoma Society, the Veterans Affairs Research Service and institutional awards from Duke University. We thank the patients and healthy volunteers for donating blood for this research. We also thank Derek Cyr for biostatistical consultation and Nelson Chao for critically reading and reviewing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R Friedman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mowery, Y., Weinberg, J., Kennedy, M. et al. LMP-420: a novel purine nucleoside analog with potent cytotoxic effects for CLL cells and minimal toxicity for normal hematopoietic cells. Leukemia 24, 1580–1587 (2010). https://doi.org/10.1038/leu.2010.150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.150

Keywords

Search

Quick links