Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Reduced DNAM-1 expression on bone marrow NK cells associated with impaired killing of CD34+ blasts in myelodysplastic syndrome

Abstract

Myelodysplastic syndromes (MDS) comprise a heterogeneous group of clonal stem-cell disorders characterized by ineffective hematopoiesis and risk of progression to acute myeloid leukemia. Increased apoptosis and suppressed functions of peripheral blood natural killer (NK) cells have been described in MDS patients, but only limited information is available on the phenotypic and functional integrity of NK cells in the bone marrow. In a cohort of 41 patients with distinct clinical subtypes of MDS, we here show that NK cells in the bone marrow show decreased surface expression of the activating receptors DNAM-1 and NKG2D. Notably, decreased receptor expression correlated with elevated bone marrow blast counts and was associated with impaired NK-cell responsiveness to stimulation with the K562 cell line, or co-activation by NKG2D or DNAM-1 in combination with the 2B4 receptor. Furthermore, antibody-masking experiments revealed a central role for DNAM-1 in NK cell-mediated killing of freshly isolated MDS blasts. Thus, given the emerging evidence for NK cell-mediated immune surveillance of neoplastic cells, we speculate that reduced expression of DNAM-1 on bone marrow NK cells may facilitate disease progression in patients with MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aggerholm A, Holm MS, Guldberg P, Olesen LH, Hokland P . Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol 2006; 76: 23–32.

    Article  CAS  Google Scholar 

  2. Bacher U, Haferlach T, Kern W, Haferlach C, Schnittger S . A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia. Haematologica 2007; 92: 744–752.

    Article  CAS  Google Scholar 

  3. Kiladjian JJ, Visentin G, Viey E, Chevret S, Eclache V, Stirnemann J et al. Activation of cytotoxic T-cell receptor gammadelta T lymphocytes in response to specific stimulation in myelodysplastic syndromes. Haematologica 2008; 93: 381–389.

    Article  CAS  Google Scholar 

  4. Sloand EM, Rezvani K . The role of the immune system in myelodysplasia: implications for therapy. Semin Hematol 2008; 45: 39–48.

    Article  CAS  Google Scholar 

  5. Jaffe ES, Harris NL, Stein H, Vardiman JW (eds). World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2001: (85).

    Google Scholar 

  6. Steensma DP, Tefferi A . The myelodysplastic syndrome(s): a perspective and review highlighting current controversies. Leuk Res 2003; 27: 95–120.

    Article  Google Scholar 

  7. Kindwall-Keller T, Isola LM . The evolution of hematopoietic SCT in myelodysplastic syndrome. Bone Marrow Transplant 2009; 43: 597–609.

    Article  CAS  Google Scholar 

  8. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  Google Scholar 

  9. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105: 3051–3057.

    Article  CAS  Google Scholar 

  10. Tajima F, Kawatani T, Endo A, Kawasaki H . Natural killer cell activity and cytokine production as prognostic factors in adult acute leukemia. Leukemia 1996; 10: 478–482.

    CAS  PubMed  Google Scholar 

  11. Chamuleau ME, Westers TM, van Dreunen L, Groenland J, Zevenbergen A, Eeltink CM et al. Immune mediated autologous cytotoxicity against hematopoietic precursor cells in patients with myelodysplastic syndrome. Haematologica 2009; 94: 496–506.

    Article  CAS  Google Scholar 

  12. List A, Kurtin S, Roe DJ, Buresh A, Mahadevan D, Fuchs D et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 2005; 352: 549–557.

    Article  CAS  Google Scholar 

  13. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001; 97: 3146–3151.

    Article  CAS  Google Scholar 

  14. Jacobs R, Hintzen G, Kemper A, Beul K, Kempf S, Behrens G et al. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 2001; 31: 3121–3127.

    Article  CAS  Google Scholar 

  15. Romagnani C, Juelke K, Falco M, Morandi B, D′Agostino A, Costa R et al. CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 2007; 178: 4947–4955.

    Article  CAS  Google Scholar 

  16. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 2009; 206: 25–34.

    Article  CAS  Google Scholar 

  17. Cooper MA, Fehniger TA, Caligiuri MA . The biology of human natural killer-cell subsets. Trends Immunol 2001; 22: 633–640.

    Article  CAS  Google Scholar 

  18. Bryceson YT, Long EO . Line of attack: NK cell specificity and integration of signals. Curr Opin Immunol 2008; 20: 344–352.

    Article  CAS  Google Scholar 

  19. Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 2008; 28: 571–580.

    Article  CAS  Google Scholar 

  20. Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S, Honda S et al. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med 2008; 205: 2959–2964.

    Article  CAS  Google Scholar 

  21. Carlsten M, Malmberg KJ, Ljunggren HG . Natural killer cell-mediated lysis of freshly isolated human tumor cells. Int J Cancer 2009; 124: 757–762.

    Article  CAS  Google Scholar 

  22. Garcia-Iglesias T, Del Toro-Arreola A, Albarran-Somoza B, Del Toro-Arreola S, Sanchez-Hernandez PE, Ramirez-Duenas MG et al. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 2009; 9: 186.

    Article  Google Scholar 

  23. Konjevic G, Mirjacic Martinovic K, Vuletic A, Jovic V, Jurisic V, Babovic N et al. Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients. Clin Exp Metastasis 2007; 24: 1–11.

    Article  CAS  Google Scholar 

  24. Carlsten M, Norell H, Bryceson YT, Poschke I, Schedvins K, Ljunggren HG et al. Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J Immunol 2009; 183: 4921–4930.

    Article  CAS  Google Scholar 

  25. Epling-Burnette PK, Bai F, Painter JS, Rollison DE, Salih HR, Krusch M et al. Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 2007; 109: 4816–4824.

    Article  CAS  Google Scholar 

  26. Balsamo M, Scordamaglia F, Pietra G, Manzini C, Cantoni C, Boitano M et al. Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity. Proc Natl Acad Sci USA 2009.

  27. Kerndrup G, Meyer K, Ellegaard J, Hokland P . Natural killer (NK)-cell activity and antibody-dependent cellular cytotoxicity (ADCC) in primary preleukemic syndrome. Leuk Res 1984; 8: 239–247.

    Article  CAS  Google Scholar 

  28. Kiladjian JJ, Bourgeois E, Lobe I, Braun T, Visentin G, Bourhis JH et al. Cytolytic function and survival of natural killer cells are severely altered in myelodysplastic syndromes. Leukemia 2006; 20: 463–470.

    Article  CAS  Google Scholar 

  29. Porzsolt F, Heimpel H . Natural killer cell activity in preleukaemia. Lancet 1982; 1: 449.

    Article  CAS  Google Scholar 

  30. Heaney ML, Golde DW . Myelodysplasia. N Engl J Med 1999; 340: 1649–1660.

    Article  CAS  Google Scholar 

  31. Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO . Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med 2005; 202: 1001–1012.

    Article  CAS  Google Scholar 

  32. Bryceson YT, March ME, Ljunggren HG, Long EO . Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 2006; 107: 159–166.

    Article  CAS  Google Scholar 

  33. Miura I, Kobayashi Y, Takahashi N, Saitoh K, Miura AB . Involvement of natural killer cells in patients with myelodysplastic syndrome carrying monosomy 7 revealed by the application of fluorescence in situ hybridization to cells collected by means of fluorescence-activated cell sorting. Br J Haematol 2000; 110: 876–879.

    Article  CAS  Google Scholar 

  34. Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 2007; 109: 323–330.

    Article  CAS  Google Scholar 

  35. Coudert JD, Zimmer J, Tomasello E, Cebecauer M, Colonna M, Vivier E et al. Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood 2005; 106: 1711–1717.

    Article  CAS  Google Scholar 

  36. Ogasawara K, Hamerman JA, Hsin H, Chikuma S, Bour-Jordan H, Chen T et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 2003; 18: 41–51.

    Article  CAS  Google Scholar 

  37. Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 2005; 6: 928–937.

    Article  CAS  Google Scholar 

  38. Roda-Navarro P, Vales-Gomez M, Chisholm SE, Reyburn HT . Transfer of NKG2D and MICB at the cytotoxic NK cell immune synapse correlates with a reduction in NK cell cytotoxic function. Proc Natl Acad Sci USA 2006; 103: 11258–11263.

    Article  CAS  Google Scholar 

  39. Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 2003; 100: 4120–4125.

    Article  CAS  Google Scholar 

  40. Allampallam K, Shetty V, Mundle S, Dutt D, Kravitz H, Reddy PL et al. Biological significance of proliferation, apoptosis, cytokines, and monocyte/macrophage cells in bone marrow biopsies of 145 patients with myelodysplastic syndrome. Int J Hematol 2002; 75: 289–297.

    Article  CAS  Google Scholar 

  41. Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood 2008; 111: 1428–1436.

    Article  CAS  Google Scholar 

  42. Siegler U, Kalberer CP, Nowbakht P, Sendelov S, Meyer-Monard S, Wodnar-Filipowicz A . Activated natural killer cells from patients with acute myeloid leukemia are cytotoxic against autologous leukemic blasts in NOD/SCID mice. Leukemia 2005; 19: 2215–2222.

    Article  CAS  Google Scholar 

  43. Hanaoka N, Nakakuma H, Horikawa K, Nagakura S, Tsuzuki Y, Shimanuki M et al. NKG2D-mediated immunity underlying paroxysmal nocturnal haemoglobinuria and related bone marrow failure syndromes. Br J Haematol 2009; 146: 538–545.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the individuals who voluntarily donated bone marrow for this study. This work was supported by Grants from the Swedish Foundation for Strategic Research, the Swedish Research Council, the Swedish Cancer Society, the Swedish Children's Cancer Foundation, the Cancer Society of Stockholm, the Royal Swedish Academy of Sciences, the Tobias Foundation, the Söderberg Foundation, the Belvén Foundation, the Åke Wiberg Foundation, the Karolinska Institutet, the Novartis and the Swiss Foundation for Medical-Biological Stipends.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Carlsten or K-J Malmberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlsten, M., Baumann, B., Simonsson, M. et al. Reduced DNAM-1 expression on bone marrow NK cells associated with impaired killing of CD34+ blasts in myelodysplastic syndrome. Leukemia 24, 1607–1616 (2010). https://doi.org/10.1038/leu.2010.149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.149

Keywords

This article is cited by

Search

Quick links