Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Fenofibrate induces effective apoptosis in mantle cell lymphoma by inhibiting the TNFα/NF-κB signaling axis

Abstract

Mantle cell lymphoma (MCL) is a type of aggressive B-cell non-Hodgkin's lymphoma characterized by frequent resistance to conventional chemotherapy. In this study we provided evidence that fenofibrate, which is widely known as an agonist for peroxisome proliferator-activated receptor-α (PPARα), can induce effective apoptosis in treating MCL cells. Addition of fenofibrate to MCL cell lines significantly decreased the number of viable cells by 50% at approximately 20 μM at 72 h. This decrease in cell growth was due to apoptosis, as evidenced by the cleavage of caspase 3 and poly(ADP-ribose) polymerase. The fenofibrate-mediated effects were not significantly affected by GW6471, a specific PPARα antagonist. Using an apoptosis pathway-specific oligonucleotide array, we found that fenofibrate significantly downregulated several pro-survival genes, including tumor necrosis factor-α (TNFα). Importantly, addition of recombinant TNF-α conferred partial protection against fenofibrate-induced apoptosis. Fenofibrate also decreased the nuclear translocation of nuclear factor (NF)-κB-p65 and significantly inhibited the DNA binding of NF-κB in a dose-dependent manner. To conclude, fenofibrate shows efficacy against MCL, and the mechanism can be attributed to its inhibitory effects on the TNF-α/NF-κB signaling axis. In view of the documented safety of fenofibrate in humans, it may provide a valuable therapeutic option for MCL patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Desvergne B, Wahli W . Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999; 20: 649–688.

    CAS  PubMed  Google Scholar 

  2. Kersten S, Desvergne B, Wahli W . Roles of PPARs in health and disease. Nature 2000; 405: 421–424.

    Article  CAS  PubMed  Google Scholar 

  3. Evans RM . The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Green S, Wahli W . Peroxisome proliferator-activated receptors: finding the orphan a home. Mol Cell Endocrinol 1994; 100: 149–153.

    Article  CAS  PubMed  Google Scholar 

  5. Chinetti G, Fruchart JC, Staels B . Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 2000; 49: 497–505.

    Article  CAS  PubMed  Google Scholar 

  6. Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP et al. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 1998; 393: 790–793.

    Article  CAS  PubMed  Google Scholar 

  7. Delerive P, Fruchart JC, Staels B . Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol 2001; 169: 453–459.

    Article  CAS  PubMed  Google Scholar 

  8. Poynter ME, Daynes RA . Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 1998; 273: 32833–32841.

    Article  CAS  PubMed  Google Scholar 

  9. Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Gonzalez FJ et al. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 1999; 274: 32048–32054.

    Article  CAS  PubMed  Google Scholar 

  10. Madej A, Okopien B, Kowalski J, Zielinski M, Wysocki J, Szygula B et al. Effects of fenofibrate on plasma cytokine concentrations in patients with atherosclerosis and hyperlipoproteinemia IIb. Int J Clin Pharmacol Ther 1998; 36: 345–349.

    CAS  PubMed  Google Scholar 

  11. Reddy JK, Azarnoff DL, Hignite CE . Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 1980; 283: 397–398.

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez FJ . The peroxisome proliferator-activated receptor alpha (PPARalpha): role in hepatocarcinogenesis. Mol Cell Endocrinol 2002; 193: 71–79.

    Article  CAS  PubMed  Google Scholar 

  13. Childs M, Girardot G . [Evaluation of acquired data on long-term risk of hypolipidemic treatments]. Arch Mal Coeur Vaiss 1992; 85(Spec No. 2): 129–133.

    PubMed  Google Scholar 

  14. Cheung C, Akiyama TE, Ward JM, Nicol CJ, Feigenbaum L, Vinson C et al. Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor alpha. Cancer Res 2004; 64: 3849–3854.

    Article  CAS  PubMed  Google Scholar 

  15. Laurora S, Pizzimenti S, Briatore F, Fraioli A, Maggio M, Reffo P et al. Peroxisome proliferator-activated receptor ligands affect growth-related gene expression in human leukemic cells. J Pharmacol Exp Ther 2003; 305: 932–942.

    Article  CAS  PubMed  Google Scholar 

  16. Scatena R, Nocca G, Sole PD, Rumi C, Puggioni P, Remiddi F et al. Bezafibrate as differentiating factor of human myeloid leukemia cells. Cell Death Differ 1999; 6: 781–787.

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Zang C, Fenner MH, Liu D, Possinger K, Koeffler HP et al. Growth inhibition and apoptosis in human Philadelphia chromosome-positive lymphoblastic leukemia cell lines by treatment with the dual PPARalpha/gamma ligand TZD18. Blood 2006; 107: 3683–3692.

    Article  CAS  PubMed  Google Scholar 

  18. Shigeto T, Yokoyama Y, Xin B, Mizunuma H . Peroxisome proliferator-activated receptor alpha and gamma ligands inhibit the growth of human ovarian cancer. Oncol Rep 2007; 18: 833–840.

    CAS  PubMed  Google Scholar 

  19. Muzio G, Maggiora M, Oraldi M, Trombetta A, Canuto RA . PPARalpha and PP2A are involved in the proapoptotic effect of conjugated linoleic acid on human hepatoma cell line SK-HEP-1. Int J Cancer 2007; 121: 2395–2401.

    Article  CAS  PubMed  Google Scholar 

  20. Panigrahy D, Kaipainen A, Huang S, Butterfield CE, Barnes CM, Fannon M et al. PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci USA 2008; 105: 985–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Swerdlow S, Berger F, Isaacson P, Muller-Hermelink H . Mantle cell lymphoma. In: Harris NL, Jaffe ES, Stein H, Vardiman JW (eds). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2001.

    Google Scholar 

  22. Jares P, Colomer D, Campo E . Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 2007; 7: 750–762.

    Article  CAS  PubMed  Google Scholar 

  23. Smith MR . Mantle cell lymphoma: advances in biology and therapy. Curr Opin Hematol 2008; 15: 415–421.

    Article  CAS  PubMed  Google Scholar 

  24. Martinez N, Camacho FI, Algara P, Rodriguez A, Dopazo A, Ruiz-Ballesteros E et al. The molecular signature of mantle cell lymphoma reveals multiple signals favoring cell survival. Cancer Res 2003; 63: 8226–8232.

    CAS  PubMed  Google Scholar 

  25. Pham LV, Tamayo AT, Yoshimura LC, Lo P, Ford RJ . Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol 2003; 171: 88–95.

    Article  CAS  PubMed  Google Scholar 

  26. Shishodia S, Amin HM, Lai R, Aggarwal BB . Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 2005; 70: 700–713.

    Article  CAS  PubMed  Google Scholar 

  27. Fu L, Lin-Lee YC, Pham LV, Tamayo A, Yoshimura L, Ford RJ . Constitutive NF-kappaB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas. Blood 2006; 107: 4540–4548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tucker CA, Kapanen AI, Chikh G, Hoffman BG, Kyle AH, Wilson IM et al. Silencing Bcl-2 in models of mantle cell lymphoma is associated with decreases in cyclin D1, nuclear factor-kappaB, p53, bax, and p27 levels. Mol Cancer Ther 2008; 7: 749–758.

    Article  CAS  PubMed  Google Scholar 

  29. Rizzatti EG, Falcao RP, Panepucci RA, Proto-Siqueira R, Anselmo-Lima WT, Okamoto OK et al. Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br J Haematol 2005; 130: 516–526.

    Article  CAS  PubMed  Google Scholar 

  30. Rizzatti EG, Mora-Jensen H, Weniger MA, Gibellini F, Lee E, Daibata M et al. Noxa mediates bortezomib induced apoptosis in both sensitive and intrinsically resistant mantle cell lymphoma cells and this effect is independent of constitutive activity of the AKT and NF-kappaB pathways. Leuk Lymphoma 2008; 49: 798–808.

    Article  CAS  PubMed  Google Scholar 

  31. Ghielmini M, Zucca E . How I treat mantle cell lymphoma. Blood 2009; 114: 1469–1476.

    Article  CAS  PubMed  Google Scholar 

  32. Amin HM, McDonnell TJ, Medeiros LJ, Rassidakis GZ, Leventaki V, O’Connor SL et al. Characterization of 4 mantle cell lymphoma cell lines. Arch Pathol Lab Med 2003; 127: 424–431.

    PubMed  Google Scholar 

  33. Gelebart P, Zak Z, Anand M, Dien-Bard J, Amin HM, Lai R . Interleukin-21 effectively induces apoptosis in mantle cell lymphoma through a STAT1-dependent mechanism. Leukemia 2009; 23: 1836–1846.

    Article  CAS  PubMed  Google Scholar 

  34. Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE et al. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature 2002; 415: 813–817.

    Article  CAS  PubMed  Google Scholar 

  35. Klier M, Anastasov N, Hermann A, Meindl T, Angermeier D, Raffeld M et al. Specific lentiviral shRNA-mediated knockdown of cyclin D1 in mantle cell lymphoma has minimal effects on cell survival and reveals a regulatory circuit with cyclin D2. Leukemia 2008; 22: 2097–2105.

    Article  CAS  PubMed  Google Scholar 

  36. Gizard F, Nomiyama T, Zhao Y, Findeisen HM, Heywood EB, Jones KL et al. The PPARalpha/p16INK4a pathway inhibits vascular smooth muscle cell proliferation by repressing cell cycle-dependent telomerase activation. Circ Res 2008; 103: 1155–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao X, Li LY . PPAR-alpha agonist fenofibrate induces renal CYP enzymes and reduces blood pressure and glomerular hypertrophy in Zucker diabetic fatty rats. Am J Nephrol 2008; 28: 598–606.

    Article  CAS  PubMed  Google Scholar 

  38. Saidi SA, Holland CM, Charnock-Jones DS, Smith SK . In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer. Mol Cancer 2006; 5: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marx N, Sukhova GK, Collins T, Libby P, Plutzky J . PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 1999; 99: 3125–3131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Okamoto H, Iwamoto T, Kotake S, Momohara S, Yamanaka H, Kamatani N . Inhibition of NF-kappaB signaling by fenofibrate, a peroxisome proliferator-activated receptor-alpha ligand, presents a therapeutic strategy for rheumatoid arthritis. Clin Exp Rheumatol 2005; 23: 323–330.

    CAS  PubMed  Google Scholar 

  41. Ogata T, Miyauchi T, Sakai S, Takanashi M, Irukayama-Tomobe Y, Yamaguchi I . Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway. J Am Coll Cardiol 2004; 43: 1481–1488.

    Article  CAS  PubMed  Google Scholar 

  42. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608.

    Article  CAS  PubMed  Google Scholar 

  43. Guay DR . Micronized fenofibrate: a new fibric acid hypolipidemic agent. Ann Pharmacother 1999; 33: 1083–1103.

    Article  CAS  PubMed  Google Scholar 

  44. Zambon A, Cusi K . The role of fenofibrate in clinical practice. Diab Vasc Dis Res 2007; 4 (Suppl 3): S15–S20.

    Article  PubMed  Google Scholar 

  45. Steinhoff M, Beyer M, Roewert-Huber J, Lukowsky A, Assaf C, Sterry W . Complete clinical remission of tumor-stage mycosis fungoides after acute extensive skin necroses, granulomatous reaction, and fever under treatment with bexarotene, vorinostat, and high-dose fenofibrate. J Am Acad Dermatol 2008; 58 (5 Suppl 1): S88–S91.

    Article  PubMed  Google Scholar 

  46. Krempf M, Rohmer V, Farnier M, Issa-Sayegh M, Corda C, Sirugue I et al. Efficacy and safety of micronised fenofibrate in a randomised double-blind study comparing four doses from 200–400 mg daily with placebo in patients with hypercholesterolemia. Diabetes Metab 2000; 26: 184–191.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ZZ and PG are recipients of the Research Fellowship Award of the Alberta Cancer Research Institute. This study is supported by a research operating grant awarded by the National Cancer Institute of Canada to RL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Lai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zak, Z., Gelebart, P. & Lai, R. Fenofibrate induces effective apoptosis in mantle cell lymphoma by inhibiting the TNFα/NF-κB signaling axis. Leukemia 24, 1476–1486 (2010). https://doi.org/10.1038/leu.2010.117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.117

Keywords

This article is cited by

Search

Quick links