Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma

Abstract

Nasal-type natural killer (NK) cell lymphoma is an infrequent aggressive malignant disease with very poor prognosis. We aimed to explore the possible role of the transcription factor STAT3 in the pathophysiology of this malignancy, as it was involved in oncogenesis and chemoresistance. For this, we established and characterized a continuous interleukin 2-dependent NK cell line (MEC04) from a patient with a fatal nasal-type NK-cell lymphoma. Cells harbored poor cytotoxic activity against K562 cells, and spontaneously secreted interferon-γ, interleukin-10 and vascular-endothelium growth factor in vitro. STAT3 was phosphorylated in Y705 dimerization residue in MEC04 cells and restricted to the nucleus. Y705 STAT3 phosphorylation involved JAK2, as exposure of cells to AG490 inhibitor inhibited Y705 STAT3 phosphorylation. By using recombinant transducible TAT-STAT3-β (β isoform), TAT-STAT3Y705F (a STAT3 protein mutated on Y705 residue, which prevents STAT3 dimerization) and peptides inhibiting specifically STAT3 dimerization, we inhibited STAT3 phosphorylation and cell growth, with cell death induction. Finally, STAT3 was phosphorylated in Y705 residue in the nuclei of lymphoma cells in eight/nine patients with nasal-type NK/T-cell lymphoma and in YT, another NK cell line. Our results suggest that STAT3 protein has a major role in the oncogenic process of nasal-type NK-cell lymphomas, and may represent a promising therapeutical target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jaffe ES, Harris NL, Stein H, Vardiman JW . World Health Organization Classification of Tumours. Pathology and Genetics, Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2001.

    Google Scholar 

  2. Jaffe ES . Pathobiology of peripheral T-cell lymphomas. Hematology Am Soc Hematol Educ Program 2006, 317–322.

  3. Kanavaros P, Lescs MC, Briere J, Divine M, Galateau F, Joab I et al. Nasal T-cell lymphoma: a clinicopathologic entity associated with peculiar phenotype and with Epstein-Barr virus. Blood 1993; 81: 2688–2695.

    CAS  PubMed  Google Scholar 

  4. Kanavaros P, Briere J, Emile JF, Gaulard P . Epstein-Barr virus in T and natural killer (NK) cell non-Hodgkin's lymphomas. Leukemia 1996; 10 (Suppl 2): s84–s87.

    PubMed  Google Scholar 

  5. Bossard C, Belhadj K, Reyes F, Martin-Garcia N, Berger F, Kummer JA et al. Expression of the granzyme B inhibitor PI9 predicts outcome in nasal NK/T-cell lymphoma: results of a western series of 48 patients treated with first-line polychemotherapy within the Groupe d'Etude des Lymphomes de l'Adulte (GELA) trials. Blood 2007; 109: 2183–2189.

    Article  CAS  Google Scholar 

  6. Quintanilla-Martinez L, Kremer M, Keller G, Nathrath M, Gamboa-Dominguez A, Meneses A et al. p53 mutations in nasal natural killer/T-cell lymphoma from Mexico: association with large cell morphology and advanced disease. Am J Pathol 2001; 159: 2095–2105.

    Article  CAS  Google Scholar 

  7. Takakuwa T, Dong Z, Nakatsuka S, Kojya S, Harabuchi Y, Yang WI et al. Frequent mutations of Fas gene in nasal NK/T cell lymphoma. Oncogene 2002; 21: 4702–4705.

    Article  CAS  Google Scholar 

  8. Takahara M, Kishibe K, Bandoh N, Nonaka S, Harabuchi Y . P53, N- and K-Ras, and beta-catenin gene mutations and prognostic factors in nasal NK/T-cell lymphoma from Hokkaido, Japan. Hum Pathol 2004; 35: 86–95.

    Article  CAS  Google Scholar 

  9. Jeon YK, Kim H, Park SO, Choi HY, Kim YA, Park SS et al. Resistance to Fas-mediated apoptosis is restored by cycloheximide through the downregulation of cellular FLIPL in NK/T-cell lymphoma. Lab Invest 2005; 85: 874–884.

    Article  CAS  Google Scholar 

  10. Aozasa K, Takakuwa T, Hongyo T, Yang WI . Nasal NK/T-cell lymphoma: epidemiology and pathogenesis. Int J Hematol 2008; 87: 110–117.

    Article  Google Scholar 

  11. Yamaguchi M, Kita K, Miwa H, Nishii K, Oka K, Ohno T et al. Frequent expression of P-glycoprotein/MDR1 by nasal T-cell lymphoma cells. Cancer 1995; 76: 2351–2356.

    Article  CAS  Google Scholar 

  12. Zhao S, Tang QL, He MX, Yang F, Wang H, Zhang WY et al. A novel nude mice model of human extranodal nasal type NK/T-cell lymphoma. Leukemia 2008; 22: 170–178.

    Article  CAS  Google Scholar 

  13. Tsuchiyama J, Yoshino T, Mori M, Kondoh E, Oka T, Akagi T et al. Characterization of a novel human natural killer-cell line (NK-YS) established from natural killer cell lymphoma/leukemia associated with Epstein-Barr virus infection. Blood 1998; 92: 1374–1383.

    CAS  PubMed  Google Scholar 

  14. Kagami Y, Nakamura S, Suzuki R, Iida S, Yatabe Y, Okada Y et al. Establishment of an IL-2-dependent cell line derived from ‘nasal-type’ NK/T-cell lymphoma of CD2+, sCD3−, CD3epsilon+, CD56+ phenotype and associated with the Epstein-Barr virus. Br J Haematol 1998; 103: 669–677.

    Article  CAS  Google Scholar 

  15. Yagita M, Huang CL, Umehara H, Matsuo Y, Tabata R, Miyake M et al. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation. Leukemia 2000; 14: 922–930.

    Article  CAS  Google Scholar 

  16. Nagata H, Konno A, Kimura N, Zhang Y, Kimura M, Demachi A et al. Characterization of novel natural killer (NK)-cell and gammadelta T-cell lines established from primary lesions of nasal T/NK-cell lymphomas associated with the Epstein-Barr virus. Blood 2001; 97: 708–713.

    Article  CAS  Google Scholar 

  17. Drexler HG, Matsuo Y . Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma. Leukemia 2000; 14: 777–782.

    Article  CAS  Google Scholar 

  18. Benekli M, Baer MR, Baumann H, Wetzler M . Signal transducer and activator of transcription proteins in leukemias. Blood 2003; 101: 2940–2954.

    Article  CAS  Google Scholar 

  19. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C et al. Stat3 as an oncogene. Cell 1999; 98: 295–303.

    Article  CAS  Google Scholar 

  20. Bowman T, Garcia R, Turkson J, Jove R . STATs in oncogenesis. Oncogene 2000; 19: 2474–2488.

    Article  CAS  Google Scholar 

  21. Levy DE, Lee CK . What does Stat3 do? J Clin Invest 2002; 109: 1143–1148.

    Article  CAS  Google Scholar 

  22. Zamo A, Chiarle R, Piva R, Howes J, Fan Y, Chilosi M et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 2002; 21: 1038–1047.

    Article  CAS  Google Scholar 

  23. Zhang Q, Raghunath PN, Xue L, Majewski M, Carpentieri DF, Odum N et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol 2002; 168: 466–474.

    Article  CAS  Google Scholar 

  24. Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 2005; 11: 623–629.

    Article  CAS  Google Scholar 

  25. Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara AB et al. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann NY Acad Sci 2006; 1091: 151–169.

    Article  CAS  Google Scholar 

  26. Drexler HG, Matsuo Y . Guidelines for the characterization and publication of human malignant hematopoietic cell lines. Leukemia 1999; 13: 835–842.

    Article  CAS  Google Scholar 

  27. Turkson J, Ryan D, Kim JS, Zhang Y, Chen Z, Haura E et al. Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J Biol Chem 2001; 276: 45443–45455.

    Article  CAS  Google Scholar 

  28. Nguyen S, Dhedin N, Vernant JP, Kuentz M, Al Jijakli A, Rouas-Freiss N et al. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood 2005; 105: 4135–4142.

    Article  CAS  Google Scholar 

  29. Clave E, Rocha V, Talvensaari K, Busson M, Douay C, Appert ML et al. Prognostic value of pretransplantation host thymic function in HLA-identical sibling hematopoietic stem cell transplantation. Blood 2005; 105: 2608–2613.

    Article  CAS  Google Scholar 

  30. Chen CL, Hsieh FC, Lieblein JC, Brown J, Chan C, Wallace JA et al. Stat3 activation in human endometrial and cervical cancers. Br J Cancer 2007; 96: 591–599.

    Article  CAS  Google Scholar 

  31. Harir N, Pecquet C, Kerenyi M, Sonneck K, Kovacic B, Nyga R et al. Constitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias. Blood 2007; 109: 1678–1686.

    Article  CAS  Google Scholar 

  32. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  33. Cooper MA, Fehniger TA, Caligiuri MA . The biology of human natural killer-cell subsets. Trends Immunol 2001; 22: 633–640.

    Article  CAS  Google Scholar 

  34. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002; 21: 2000–2008.

    Article  CAS  Google Scholar 

  35. Yoo JY, Huso DL, Nathans D, Desiderio S . Specific ablation of Stat3beta distorts the pattern of Stat3-responsive gene expression and impairs recovery from endotoxic shock. Cell 2002; 108: 331–344.

    Article  CAS  Google Scholar 

  36. Niwa H, Burdon T, Chambers I, Smith A . Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 1998; 12: 2048–2060.

    Article  CAS  Google Scholar 

  37. Garnache-Ottou F, Feuillard J, Saas P . Plasmacytoid dendritic cell leukaemia/lymphoma: towards a well defined entity? Br J Haematol 2007; 136: 539–548.

    Article  CAS  Google Scholar 

  38. Jordan MB, Hildeman D, Kappler J, Marrack P . An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood 2004; 104: 735–743.

    Article  CAS  Google Scholar 

  39. Hemmi S, Bohni R, Stark G, Di Marco F, Aguet M . A novel member of the interferon receptor family complements functionality of the murine interferon gamma receptor in human cells. Cell 1994; 76: 803–810.

    Article  CAS  Google Scholar 

  40. Wen Z, Zhong Z, Darnell Jr JE . Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 1995; 82: 241–250.

    Article  CAS  Google Scholar 

  41. Zhang X, Blenis J, Li HC, Schindler C, Chen-Kiang S . Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science 1995; 267: 1990–1994.

    Article  CAS  Google Scholar 

  42. Zhang Q, Wang HY, Marzec M, Raghunath PN, Nagasawa T, Wasik MA . STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc Natl Acad Sci USA 2005; 102: 6948–6953.

    Article  CAS  Google Scholar 

  43. Zhang Q, Wang HY, Woetmann A, Raghunath PN, Odum N, Wasik MA . STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes. Blood 2006; 108: 1058–1064.

    Article  CAS  Google Scholar 

  44. Narimatsu M, Maeda H, Itoh S, Atsumi T, Ohtani T, Nishida K et al. Tissue-specific autoregulation of the stat3 gene and its role in interleukin-6-induced survival signals in T cells. Mol Cell Biol 2001; 21: 6615–6625.

    Article  CAS  Google Scholar 

  45. Yang J, Chatterjee-Kishore M, Staugaitis SM, Nguyen H, Schlessinger K, Levy DE et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res 2005; 65: 939–947.

    CAS  PubMed  Google Scholar 

  46. Boulland ML, Meignin V, Leroy-Viard K, Copie-Bergman C, Brière J, Touitou R et al. Human interleukin-10 expression in T/natural killer-cell lymphomas: association with anaplastic large cell lymphomas and nasal natural killer-cell lymphomas. Am J Pathol 1998; 153: 1229–1237.

    Article  CAS  Google Scholar 

  47. Kasprzycka M, Marzec M, Liu X, Zhang Q, Wasik MA . Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc Natl Acad Sci USA 2006; 103: 9964–9969.

    Article  CAS  Google Scholar 

  48. Yu H, Kortylewski M, Pardoll D . Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 2007; 7: 41–51.

    Article  CAS  Google Scholar 

  49. Gires O, Kohlhuber F, Kilger E, Baumann M, Kieser A, Kaiser C et al. Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 1999; 18: 3064–3073.

    Article  CAS  Google Scholar 

  50. Eliopoulos AG, Young LS . LMP1 structure and signal transduction. Semin Cancer Biol 2001; 11: 435–444.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Véronique Debuysscher, Aline Regnier (Inserm E0351, Faculté de Médecine d'Amiens, France) and Sandrine Malot (Service d'Hématologie et de Thérapie Cellulaire, Hôpital Saint-Antoine, Paris, France) for technical assistance and Peter Moller for providing the protocol for the construction of the paraffin-embedded cell block. We also thank Christian Schmitt (Inserm U841, équipe 2, Créteil, France) for providing DERL-2, DERL-7 and SNK6 cell lines and for invaluable comments. Supported in part by a Grant from the GIS-Institut des Maladies Rares (GIS MR0428). This work was performed on behalf of the Clinphy Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Coppo.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppo, P., Gouilleux-Gruart, V., Huang, Y. et al. STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma. Leukemia 23, 1667–1678 (2009). https://doi.org/10.1038/leu.2009.91

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.91

Keywords

This article is cited by

Search

Quick links