Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

WT1 peptide-specific T cells generated from peripheral blood of healthy donors: possible implications for adoptive immunotherapy after allogeneic stem cell transplantation

Abstract

The Wilms tumor antigen, WT1, is expressed at high levels in various types of leukemia and solid tumors, including lung, breast, colon cancer and soft tissue sarcomas. The WT1 protein has been found to be highly immunogenic, and spontaneous humoral and cytotoxic T-cell responses have been detected in patients suffering from leukemia. Furthermore, major histocompatibility complexes class I- and II-restricted WT1 peptide epitopes have been shown to elicit immune responses in patients with WT1-expressing tumors. As a consequence, WT1 has become an attractive target for anticancer immunotherapy. In this study, we investigated the feasibility of generating WT1-specific T cells for adoptive immunotherapy after allogeneic stem cell transplantation. We analyzed the incidence of T cells specific for WT1 peptide epitopes in cancer patients and healthy volunteers. It is noted that we could generate WT1-specific responses in nine of ten healthy volunteer donors and established T-cell clones specific for two WT1-derived peptide epitopes. These in vitro expanded WT1-specific T cells effectively lysed WT1-expressing tumor cell lines, indicating the potential clinical impact of ex vivo expanded donor-derived WT1-specific T cells for adoptive immunotherapy after allogeneic stem cell transplantation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bader P, Sörensen J, Jarisch A, Weber G, Kreyenberg H, Esser R et al. Allogeneic stem cell transplantation in children and adolescents with high-risk alveolar rhabdomyosarcoma. Bone Marrow Transplant 2007; 39 (Suppl 1): 74.

    Google Scholar 

  2. Weber G, Kuci S, Karbach J, Willasch A, Kreyenberg H, Klingebiel T et al. WT1-specific T-cells as a therapeutic tool for cancer immunotherapy after stem cell transplantation. Bone Marrow Transplant 2008; 41 (Suppl 1): 300.

    Google Scholar 

  3. Bader P, Kreyenberg H, Hoelle W, Dueckers G, Handgretinger R, Lang P et al. Increasing mixed chimerism is an important prognostic factor for unfavorable outcome in children with acute lymphoblastic leukemia after allogeneic stem-cell transplantation: possible role for pre-emptive immunotherapy? J Clin Oncol 2004; 22: 1696–1706.

    Article  PubMed  Google Scholar 

  4. Van Driessche A, Gao L, Stauss HJ, Ponsaerts P, Van Bockstaele DR, Berneman ZN et al. Antigen-specific cellular immunotherapy of leukemia. Leukemia 2005; 19: 1863–1871.

    Article  CAS  PubMed  Google Scholar 

  5. Greiner J, Dohner H, Schmitt M . Cancer vaccines for patients with acute myeloid leukemia—definition of leukemia-associated antigens and current clinical protocols targeting these antigens. Haematologica 2006; 91: 1653–1661.

    CAS  PubMed  Google Scholar 

  6. Barrett AJ, Rezvani K . Translational mini-review series on vaccines: peptide vaccines for myeloid leukaemias. Clin Exp Immunol 2007; 148: 189–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 1990; 60: 509–520.

    Article  CAS  PubMed  Google Scholar 

  8. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA . Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 1990; 343: 774–778.

    Article  CAS  PubMed  Google Scholar 

  9. Loeb DM, Evron E, Patel CB, Sharma PM, Niranjan B, Buluwela L et al. Wilms’ tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res 2001; 61: 921–925.

    CAS  PubMed  Google Scholar 

  10. Gillmore R, Xue SA, Holler A, Kaeda J, Hadjiminas D, Healy V et al. Detection of Wilms’ tumor antigen-specific CTL in tumor-draining lymph nodes of patients with early breast cancer. Clin Cancer Res 2006; 12: 34–42.

    Article  CAS  PubMed  Google Scholar 

  11. Oji Y, Miyoshi S, Maeda H, Hayashi S, Tamaki H, Nakatsuka S et al. Overexpression of the Wilms’ tumor gene WT1 in de novo lung cancers. Int J Cancer 2002; 100: 297–303.

    Article  CAS  PubMed  Google Scholar 

  12. Makita M, Hiraki A, Azuma T, Tsuboi A, Oka Y, Sugiyama H et al. Antilung cancer effect of WT1-specific cytotoxic T lymphocytes. Clin Cancer Res 2002; 8: 2626–2631.

    CAS  PubMed  Google Scholar 

  13. Koesters R, Linnebacher M, Coy JF, Germann A, Schwitalle Y, Findeisen P et al. WT1 is a tumor-associated antigen in colon cancer that can be recognized by in vitro stimulated cytotoxic T cells. Int J Cancer 2004; 109: 385–392.

    Article  CAS  PubMed  Google Scholar 

  14. Wilsher M, Cheerala B . WT1 as a complementary marker of malignant melanoma: an immunohistochemical study of whole sections. Histopathology 2007; 51: 605–610.

    Article  CAS  PubMed  Google Scholar 

  15. Nakatsuka S, Oji Y, Horiuchi T, Kanda T, Kitagawa M, Takeuchi T et al. Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod Pathol 2006; 19: 804–814.

    Article  CAS  PubMed  Google Scholar 

  16. Gaiger A, Reese V, Disis ML, Cheever MA . Immunity to WT1 in the animal model and in patients with acute myeloid leukemia. Blood 2000; 96: 1480–1489.

    CAS  PubMed  Google Scholar 

  17. Gaiger A, Carter L, Greinix H, Carter D, McNeill PD, Houghton RL et al. WT1-specific serum antibodies in patients with leukemia. Clin Cancer Res 2001; 7 (3 Suppl): 761s–765s.

    CAS  PubMed  Google Scholar 

  18. Scheibenbogen C, Letsch A, Thiel E, Schmittel A, Mailaender V, Baerwolf S et al. CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 2002; 100: 2132–2137.

    Article  CAS  PubMed  Google Scholar 

  19. Smith MA, Morton CL, Phelps D, Girtman K, Neale G, Houghton PJ . SK-NEP-1 and Rh1 are Ewing family tumor lines. Pediatr Blood Cancer 2008; 50: 703–706.

    Article  PubMed  Google Scholar 

  20. Kreuzer KA, Saborowski A, Lupberger J, Appelt C, Na IK, le Coutre P et al. Fluorescent 5′-exonuclease assay for the absolute quantification of Wilms’ tumour gene (WT1) mRNA: implications for monitoring human leukaemias. Br J Haematol 2001; 114: 313–318.

    Article  CAS  PubMed  Google Scholar 

  21. Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 2002; 16: 2115–2121.

    Article  CAS  PubMed  Google Scholar 

  22. Rezvani K, Brenchley JM, Price DA, Kilical Y, Gostick E, Sewell AK et al. T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms’ tumor 1 protein in patients with leukemia and healthy donors: identification, quantification, and characterization. Clin Cancer Res 2005; 11 (24 Part 1): 8799–8807.

    Article  CAS  PubMed  Google Scholar 

  23. Chaise C, Buchan SL, Rice J, Marquet J, Rouard H, Kuentz M et al. DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance. Blood 2008; 112: 2956–2964.

    Article  CAS  PubMed  Google Scholar 

  24. Oka Y, Udaka K, Tsuboi A, Elisseeva OA, Ogawa H, Aozasa K et al. Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. J Immunol 2000; 164: 1873–1880.

    Article  CAS  PubMed  Google Scholar 

  25. Oka Y, Elisseeva OA, Tsuboi A, Ogawa H, Tamaki H, Li H et al. Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1 ) product. Immunogenetics 2000; 51: 99–107.

    Article  CAS  PubMed  Google Scholar 

  26. Rezvani K, Grube M, Brenchley JM, Sconocchia G, Fujiwara H, Price DA et al. Functional leukemia-associated antigen-specific memory CD8+ T cells exist in healthy individuals and in patients with chronic myelogenous leukemia before and after stem cell transplantation. Blood 2003; 102: 2892–2900.

    Article  CAS  PubMed  Google Scholar 

  27. Ho WY, Nguyen HN, Wolfl M, Kuball J, Greenberg PD . In vitro methods for generating CD8+T-cell clones for immunotherapy from the naive repertoire. J Immunol Methods 2006; 310: 40–52.

    Article  CAS  PubMed  Google Scholar 

  28. Rezvani K, Yong AS, Savani BN, Mielke S, Keyvanfar K, Gostick E et al. Graft-versus-leukemia effects associated with detectable Wilms tumor-1 specific T lymphocytes after allogeneic stem-cell transplantation for acute lymphoblastic leukemia. Blood 2007; 110: 1924–1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bellantuono I, Gao L, Parry S, Marley S, Dazzi F, Apperley J et al. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood 2002; 100: 3835–3837.

    Article  CAS  PubMed  Google Scholar 

  30. Asemissen AM, Keilholz U, Tenzer S, Muller M, Walter S, Stevanovic S et al. Identification of a highly immunogenic HLA-A*01-binding T cell epitope of WT1. Clin Cancer Res 2006; 12: 7476–7482.

    Article  CAS  PubMed  Google Scholar 

  31. Bednarek MA, Sauma SY, Gammon MC, Porter G, Tamhankar S, Williamson AR et al. The minimum peptide epitope from the influenza virus matrix protein. Extra and intracellular loading of HLA-A2. J Immunol 1991; 147: 4047–4053.

    CAS  PubMed  Google Scholar 

  32. Scheibenbogen C, Lee KH, Stevanovic S, Witzens M, Willhauck M, Waldmann V et al. Analysis of the T cell response to tumor and viral peptide antigens by an IFNgamma-ELISPOT assay. Int J Cancer 1997; 71: 932–936.

    Article  CAS  PubMed  Google Scholar 

  33. DiBrino M, Tsuchida T, Turner RV, Parker KC, Coligan JE, Biddison WE . HLA-A1 and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immunol 1993; 151: 5930–5935.

    CAS  PubMed  Google Scholar 

  34. Karbach J, Gnjatic S, Pauligk C, Bender A, Maeurer M, Schultze JL et al. Tumor-reactive CD8+ T-cell clones in patients after NY-ESO-1 peptide vaccination. Int J Cancer 2007; 121: 2042–2048.

    Article  CAS  PubMed  Google Scholar 

  35. Blomberg K, Granberg C, Hemmila I, Lovgren T . Europium-labelled target cells in an assay of natural killer cell activity. I. A novel non-radioactive method based on time-resolved fluorescence. J Immunol Methods 1986; 86: 225–229.

    Article  CAS  PubMed  Google Scholar 

  36. Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D, Gosden C et al. The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 1990; 346: 194–197.

    Article  CAS  PubMed  Google Scholar 

  37. Mundlos S, Pelletier J, Darveau A, Bachmann M, Winterpacht A, Zabel B . Nuclear localization of the protein encoded by the Wilms’ tumor gene WT1 in embryonic and adult tissues. Development 1993; 119: 1329–1341.

    CAS  PubMed  Google Scholar 

  38. Maurer U, Brieger J, Weidmann E, Mitrou PS, Hoelzer D, Bergmann L . The Wilms’ tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro. Exp Hematol 1997; 25: 945–950.

    CAS  PubMed  Google Scholar 

  39. Baird PN, Simmons PJ . Expression of the Wilms’ tumor gene (WT1) in normal hemopoiesis. Exp Hematol 1997; 25: 312–320.

    CAS  PubMed  Google Scholar 

  40. Carpentieri DF, Nichols K, Chou PM, Matthews M, Pawel B, Huff D . The expression of WT1 in the differentiation of rhabdomyosarcoma from other pediatric small round blue cell tumors. Mod Pathol 2002; 15: 1080–1086.

    Article  CAS  PubMed  Google Scholar 

  41. Sebire NJ, Gibson S, Rampling D, Williams S, Malone M, Ramsay AD . Immunohistochemical findings in embryonal small round cell tumors with molecular diagnostic confirmation. Appl Immunohistochem Mol Morphol 2005; 13: 1–5.

    Article  PubMed  Google Scholar 

  42. Fernandez JE, Concha A, Aranega A, Ruiz-Cabello F, Cabrera T, Garrido F . HLA class I and II expression in rhabdomyosarcomas. Immunobiology 1991; 182: 440–448.

    Article  CAS  PubMed  Google Scholar 

  43. Prados J, Melguizo C, Fernandez JE, Carrillo E, Marchal JA, Boulaiz H et al. Induction of drug resistance in embryonal rhabdomyosarcoma treated with conventional chemotherapy is associated with HLA class I increase. Neoplasma 2006; 53: 226–231.

    CAS  PubMed  Google Scholar 

  44. Feuchtinger T, Matthes-Martin S, Richard C, Lion T, Fuhrer M, Hamprecht K et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 2006; 134: 64–76.

    Article  PubMed  Google Scholar 

  45. Mailander V, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U . Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia 2004; 18: 165–166.

    Article  CAS  PubMed  Google Scholar 

  46. Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 2004; 101: 13885–13890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morita S, Oka Y, Tsuboi A, Kawakami M, Maruno M, Izumoto S et al. A phase I/II trial of a WT1 (Wilms’ tumor gene) peptide vaccine in patients with solid malignancy: safety assessment based on the phase I data. Jpn J Clin Oncol 2006; 36: 231–236.

    Article  PubMed  Google Scholar 

  48. Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 2008; 111: 236–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by ‘Patenschaftsmodell’ of the University of Frankfurt/Main, Germany (GW) and is a sub-project of TranSaRNet, Translational Sarcoma Research Network of the Bundesministerium für Bildung und Forschung, Germany (PB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Bader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, G., Karbach, J., Kuçi, S. et al. WT1 peptide-specific T cells generated from peripheral blood of healthy donors: possible implications for adoptive immunotherapy after allogeneic stem cell transplantation. Leukemia 23, 1634–1642 (2009). https://doi.org/10.1038/leu.2009.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.70

Keywords

This article is cited by

Search

Quick links