Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

The gatekeeper mutation T315I confers resistance against small molecules by increasing or restoring the ABL-kinase activity accompanied by aberrant transphosphorylation of endogenous BCR, even in loss-of-function mutants of BCR/ABL

Abstract

In Philadelphia chromosome-positive (Ph+) leukemia BCR/ABL induces the leukemic phenotype. Targeted inhibition of BCR/ABL by kinase inhibitors leads to complete remission. However, patients with advanced Ph+ leukemia relapse and acquire resistance, mainly due to point mutations in BCR/ABL. The ‘gatekeeper mutation’ T315I is responsible for a general resistance to small molecules. It seems not only to decrease the affinity for kinase inhibitors, but to also confer additional features to the leukemogenic potential of BCR/ABL. To determine the role of T315I in resistance to the inhibition of oligomerization and in the leukemogenic potential of BCR/ABL, we investigated its influence on loss-of-function mutants with regard to the capacity to mediate factor independence. Here, we show that T315I (i) requires autophosphorylation at tyrosine 177 in the BCR-portion to mediate resistance against the inhibition of oligomerization; (ii) restores the capacity to mediate factor-independent growth of loss-of-function mutants due to an increase in or activation of ABL-kinase; (iii) leads to phosphorylation of endogenous BCR, suggesting aberrant substrate activation by BCR/ABL harboring the T315I mutation. These data show that T315I confers additional leukemogenic activity to BCR/ABL, which might explain the clinical behavior of patients with BCR/ABL–T315I-positive blasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Faderl S, Talpaz M, Estrov Z, O'Brien S, Kurzrock R, Kantarjian HM . The biology of chronic myeloid leukemia. N Engl J Med 1999; 341: 164–172.

    Article  CAS  Google Scholar 

  2. Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082.

    Article  CAS  Google Scholar 

  3. Deininger MW, Goldman JM, Lydon N, Melo JV . The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 1997; 90: 3691–3698.

    CAS  PubMed  Google Scholar 

  4. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  Google Scholar 

  5. Weisberg E, Griffin JD . Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 2000; 95: 3498–3505.

    CAS  PubMed  Google Scholar 

  6. Ramirez P, DiPersio JF . Therapy options in imatinib failures. Oncologist 2008; 13: 424–434.

    Article  CAS  Google Scholar 

  7. Cowan-Jacob SW, Guez V, Fendrich G, Griffin JD, Fabbro D, Furet P et al. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev Med Chem 2004; 4: 285–299.

    Article  CAS  Google Scholar 

  8. Deininger M . Resistance to imatinib: mechanisms and management. J Natl Compr Canc Netw 2005; 3: 757–768.

    Article  Google Scholar 

  9. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    Article  CAS  Google Scholar 

  10. Druker BJ . Translation of the Philadelphia chromosome into therapy for CML. Blood 2008; 112: 4808–4817.

    Article  CAS  Google Scholar 

  11. Beissert T, Puccetti E, Bianchini A, Güller S, Boehrer S, Hoelzer D et al. Targeting of the N-terminal coiled coil oligomerization interface of BCR interferes with the transformation potential of BCR-ABL and increases sensitivity to STI571. Blood 2003; 102: 2985–2993.

    Article  CAS  Google Scholar 

  12. Beissert T, Hundertmark A, Kaburova V, Travaglini L, Mian AA, Nervi C et al. Targeting of the N-terminal coiled coil oligomerization interface by a helix-2 peptide inhibits unmutated and imatinib-resistant BCR/ABL. Int J Cancer 2008; 122: 2744–2752.

    Article  CAS  Google Scholar 

  13. Puccetti E, Güller S, Orleth A, Brüggenolte N, Hoelzer D, Ottmann OG et al. BCR-ABL mediates arsenic trioxide-induced apoptosis independently of its aberrant kinase activity. Cancer Res 2000; 60: 3409–3413.

    CAS  PubMed  Google Scholar 

  14. Griswold IJ, MacPartlin M, Bumm T, Goss VL, O'Hare T, Lee KA et al. Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib. Mol Cell Biol 2006; 26: 6082–6093.

    Article  CAS  Google Scholar 

  15. Zheng X, Beissert T, Kukoc-Zivojnov N, Puccetti E, Altschmied J, Strolz C et al. Gamma-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells. Blood 2004; 103: 3535–3543.

    Article  CAS  Google Scholar 

  16. Barilá D, Superti-Furga G . An intramolecular SH3-domain interaction regulates c-Abl activity. Nat Genet 1998; 18: 280–282.

    Article  Google Scholar 

  17. Franz WM, Berger P, Wang JY . Deletion of an N-terminal regulatory domain of the c-abl tyrosine kinase activates its oncogenic potential. EMBO J 1989; 8: 137–147.

    Article  CAS  Google Scholar 

  18. Laurent E, Talpaz M, Kantarjian H, Kurzrock R . The BCR gene and philadelphia chromosome-positive leukemogenesis. Cancer Res 2001; 61: 2343–2355.

    CAS  PubMed  Google Scholar 

  19. Azam M, Seeliger MA, Gray NS, Kuriyan J, Daley GQ . Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat Struct Mol Biol 2008; 15: 1109–1118.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by a grant from Deutsche Forschungsgemeinschaft (DFG-RU 728/3-1) to MR. MR is further funded by grants from Alfred und Angelika Gutermuth Foundation, Deutsche Krebshilfe e.V. (DKH-107063 and DKH-107741) and Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS - R 07/27f).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T Beissert or M Ruthardt.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mian, A., Schüll, M., Zhao, Z. et al. The gatekeeper mutation T315I confers resistance against small molecules by increasing or restoring the ABL-kinase activity accompanied by aberrant transphosphorylation of endogenous BCR, even in loss-of-function mutants of BCR/ABL. Leukemia 23, 1614–1621 (2009). https://doi.org/10.1038/leu.2009.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.69

Keywords

This article is cited by

Search

Quick links