Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Serum metabolome analysis by 1H-NMR reveals differences between chronic lymphocytic leukaemia molecular subgroups

Abstract

Chronic lymphocytic leukaemia (CLL) is a heterogeneous disease exhibiting variable clinical course and survival rates. Mutational status of the immunoglobulin heavy chain variable regions (IGHVs) of CLL cells offers useful prognostic information for high-risk patients, but time and economical costs originally prevented it from being routinely used in a clinical setting. Instead, alternative markers of IGHV status, such as zeta-associated protein (ZAP70) or messenger RNA levels are often used. We report a 1H-NMR-based metabolomics approach to examine serum metabolic profiles of early stage, untreated CLL patients (Binet stage A) classified on the basis of IGHV mutational status or ZAP70. Metabolic profiles of CLL patients (n=29) exhibited higher concentrations of pyruvate and glutamate and decreased concentrations of isoleucine compared with controls (n=9). Differences in metabolic profiles between unmutated (UM-IGHV; n=10) and mutated IGHV (M-IGHV; n=19) patients were determined using partial least square discriminatory analysis (PLS-DA; R2=0.74, Q2=0.36). The UM-IGHV patients had elevated levels of cholesterol, lactate, uridine and fumarate, and decreased levels of pyridoxine, glycerol, 3-hydroxybutyrate and methionine concentrations. The PLS-DA models derived from ZAP70 classifications showed comparatively poor goodness-of-fit values, suggesting that IGHV mutational status correlates better with disease-related metabolic profiles. Our results highlight the usefulness of 1H-NMR-based metabolomics as a potential non-invasive prognostic tool for identifying CLL disease-state biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Garand R, Robillard N . Immunophenotypic characterization of acute leukemias and chronic lymphoproliferative disorders: practical recommendations and classifications. Hematol Cell Ther 1996; 38: 471–486.

    Article  CAS  PubMed  Google Scholar 

  2. Hamblin T . Chronic lymphocytic leukaemia: one disease or two? Ann Hematol 2002; 81: 299–303.

    Article  CAS  PubMed  Google Scholar 

  3. Dighiero G . Unsolved issues in CLL biology and management. Leukemia 2003; 17: 2385–2391.

    Article  CAS  PubMed  Google Scholar 

  4. Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS . Clinical staging of chronic lymphocytic leukemia. Blood 1975; 46: 219–234.

    CAS  PubMed  Google Scholar 

  5. Binet JL, Lepoprier M, Dighiero G, Charron D, D’Athis P, Vaugier G et al. A clinical staging system for chronic lymphocytic leukemia: prognostic significance. Cancer 1977; 40: 855–864.

    Article  CAS  PubMed  Google Scholar 

  6. Dighiero G, Maloum K, Desablens B, Cazin B, Navarro M, Leblay R et al. Chlorambucil in indolent chronic lymphocytic leukemia. French cooperative group on chronic lymphocytic leukemia. N Engl J Med 1998; 338: 1506–1514.

    Article  CAS  PubMed  Google Scholar 

  7. Krober A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 2002; 100: 1410–1416.

    CAS  PubMed  Google Scholar 

  8. Oscier DG, Gardiner AC, Mould SJ, Glide S, Davis ZA, Ibbotson RE et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 2002; 100: 1177–1184.

    CAS  PubMed  Google Scholar 

  9. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  10. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  11. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194: 1639–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  PubMed  Google Scholar 

  13. Orchard JA, Ibbotson RE, Davis Z, Wiestner A, Rosenwald A, Thomas PW et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 2004; 363: 105–111.

    Article  CAS  PubMed  Google Scholar 

  14. Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004; 351: 893–901.

    Article  CAS  PubMed  Google Scholar 

  15. Reinoso-Martin C, Jantus-Lewintre E, Ballesteros CG, Campos CB, Ferrer JR, Garcia-Conde J . ZAP-70 mRNA expression provides clinically valuable information in early-stage chronic lymphocytic leukemia. Haematologica 2008; 93: 1422–1424.

    Article  PubMed  Google Scholar 

  16. Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003; 101: 4944–4951.

    Article  CAS  PubMed  Google Scholar 

  17. Jantus-Lewintre E, Reinoso-Martin C, Montaner D, Marín M, Terol MJ, Farrás R et al. Analysis of CLL transcriptomic profile: differences between molecular subgroups. Leuk Lymph 2009; 50: 68–79.

    Article  Google Scholar 

  18. Stratowa C, Loffler G, Lichter P, Stilgenbauer S, Haberl P, Schweifer N et al. CDNA microarray gene expression analysis of B-cell chronic lymphocytic leukemia proposes potential new prognostic markers involved in lymphocyte trafficking. Int J Cancer 2001; 91: 474–480.

    Article  CAS  PubMed  Google Scholar 

  19. Gygi SP, Rochon Y, Franza BR, Aebersold R . Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999; 19: 1720–1730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D’Arena G, Musto P, Cascavilla N, Dell’Olio M, Di Renzo N, Perla G et al. CD38 expression correlates with adverse biological features and predicts poor clinical outcome in B-cell chronic lymphocytic leukemia. Leuk Lymphoma 2001; 42: 109–114.

    Article  PubMed  Google Scholar 

  21. Del Poeta G, Maurillo L, Venditti A, Buccisano F, Epiceno AM, Capelli G et al. Clinical significance of CD38 expression in chronic lymphocytic leukemia. Blood 2001; 98: 2633–2639.

    Article  CAS  PubMed  Google Scholar 

  22. Ibrahim S, Keating M, Do KA, O’Brien S, Huh YO, Jilani I et al. CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood 2001; 98: 181–186.

    Article  CAS  PubMed  Google Scholar 

  23. Nicholson JK, Lindon JC . Systems biology: metabonomics. Nature 2008; 455: 1054–1056.

    Article  CAS  PubMed  Google Scholar 

  24. Nicholson JK, Wilson ID . Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2003; 2: 668–676.

    Article  CAS  PubMed  Google Scholar 

  25. Kaddurah-Daouk R, Kristal BS, Weinshilboum RM . Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 2008; 48: 653–683.

    Article  CAS  PubMed  Google Scholar 

  26. Keun HC, Athersuch TJ . Application of metabonomics in drug development. Pharmacogenomics 2007; 8: 731–741.

    Article  CAS  PubMed  Google Scholar 

  27. Lewis GD, Asnani A, Gerszten RE . Application of metabolomics to cardiovascular biomarker and pathway discovery. J Am Coll Cardiol 2008; 52: 117–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 2002; 8: 1439–1444.

    Article  CAS  PubMed  Google Scholar 

  29. Makinen VP, Soininen P, Forsblom C, Parkkonen M, Ingman P, Kaski K et al. 1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death. Mol Syst Biol 2008; 4: 167.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhou J, Xu B, Huang J, Jia X, Xue J, Shi X et al. 1H NMR-based metabonomic and pattern recognition analysis for detection of oral squamous cell carcinoma. Clin Chim Acta 2009; 401: 8–13.

    Article  CAS  PubMed  Google Scholar 

  31. Odunsi K, Wollman RM, Ambrosone CB, Hutson A, McCann SE, Tammela J et al. Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int J Cancer 2005; 113: 782–788.

    Article  CAS  PubMed  Google Scholar 

  32. Tiziani S, Lopes V, Gunther UL . Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia 2009; 11: 269–276, .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009; 457: 910–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nicholson JK, Wilson ID . High resolution proton magnetic resonance spectroscopy of biological fluids. Prog Nucl Magn Reson Spectrosc 1989; 21: 449–501.

    Article  CAS  Google Scholar 

  35. Ernst RR, Bodenhausen G, Wokaun A . Principles of Nuclear Magnetic Resonance in One and Two Dimensions 1987, Oxford University Press: New York.

    Google Scholar 

  36. Jantus-Lewintre E, Reinoso-Martin C, Ballesteros CG, Montaner D, Farrás-Rivera R, Ramós-Mayans J et al. Crytochome-1 expression: a new prognostic marker in B-cell chronic lymphocytic leukemia. Haematologica 2009; 94: 280–284.

    Article  Google Scholar 

  37. Matthews C, Catherwood M, Morris TC, Alexander HD . Routine analysis of IgVH mutational status in CLL patients using BIOMED-2 standardized primers and protocols. Leuk Lymphoma 2004; 45: 1899–1904.

    Article  PubMed  Google Scholar 

  38. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  PubMed  Google Scholar 

  39. Ghia P, Stamatopoulos K, Belessi C, Moreno C, Stilgenbauer S, Stevenson F et al. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia 2007; 21: 1–3.

    Article  CAS  PubMed  Google Scholar 

  40. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2007; 2: 2692–2703.

    Article  CAS  PubMed  Google Scholar 

  41. Meiboom S, Gill D . Modified spin-echo method for measuring nuclear relaxation time. Rev Sci Instrum 1958; 20: 688–691.

    Article  Google Scholar 

  42. Ala-Korpela M . 1H-NMR spectroscopy of human blood plasma. Prog Nucl Magn Reson Spectrosc 1995; 27: 475–554.

    Article  CAS  Google Scholar 

  43. Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC . 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem 1995; 67: 793–811.

    Article  CAS  PubMed  Google Scholar 

  44. Anthony ML, Sweatman BC, Beddell CR, Lindon JC, Nicholson JK . Pattern recognition classification of the site of nephrotoxicity based on metabolic data derived from proton nuclear magnetic resonance spectra of urine. Mol Pharmacol 1994; 46: 199–211.

    CAS  PubMed  Google Scholar 

  45. Barton RH, Nicholson JK, Elliott P, Holmes E . High-throughput 1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: validation study. Int J Epidemiol 2008; 37 (Suppl 1): i31–i40.

    Article  PubMed  Google Scholar 

  46. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S . Multi- and Megavariate Data Analysis Part I: Basic Principles and Applications, 2nd edn. Umetrics Academy: Umea, Sweden, 2005, pp 425 .

    Google Scholar 

  47. Wold S . Cross-validatory estimation of number of components in factor and principal components models. Technometrics 1978; 20: 397–405.

    Article  Google Scholar 

  48. Barantin L, Le Pape A, Akoka S . A new method for absolute quantitation of MRS metabolites. Magn Reson Med 1997; 38: 179–182.

    Article  CAS  PubMed  Google Scholar 

  49. Dreier L, Wider G . Concentration measurements by PULCON using X-filtered or 2D NMR spectra. Magn Reson Chem 2006; 44 : S206–S212.

    Article  CAS  PubMed  Google Scholar 

  50. Kriat M, Confort-Gouny S, Vion-Dury J, Sciaky M, Viout P, Cozzone PJ . Quantitation of metabolites in human blood serum by proton magnetic resonance spectroscopy. A comparative study of the use of formate and TSP as concentration standards. NMR Biomed 1992; 5: 179–184.

    Article  CAS  PubMed  Google Scholar 

  51. Catovsky D, Fooks J, Richards S . Prognostic factors in chronic lymphocytic leukaemia: the importance of age, sex and response to treatment in survival. A report from the MRC CLL 1 trial. MRC working party on leukaemia in adults. Br J Haematol 1989; 72: 141–149.

    Article  CAS  PubMed  Google Scholar 

  52. Kempner W . The nature of leukemic blood cells as determined by their metabolism. J Clin Invest 1939; 18: 291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maneche HC . Blood pyruvate in malignant neoplastic disorders. Clin Chem 1966; 12: 158–164.

    CAS  PubMed  Google Scholar 

  54. Mazurek S, Boschek CB, Eigenbrodt E . The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy. J Bioenerg Biomembr 1997; 29: 315–330.

    Article  CAS  PubMed  Google Scholar 

  55. Mazurek S, Grimm H, Oehmke M, Weisse G, Teigelkamp S, Eigenbrodt E . Tumor M2-PK and glutaminolytic enzymes in the metabolic shift of tumor cells. Anticancer Res 2000; 20 (Suppl 6D): 5151–5154.

    CAS  PubMed  Google Scholar 

  56. Oremek GM, Teigelkamp S, Kramer W, Eigenbrodt E, Usadel KH . The pyruvate kinase isoenzyme tumor M2 (Tu M2-PK) as a tumor marker for renal carcinoma. Anticancer Res 1999; 19 (Suppl 4A): 2599–2601.

    CAS  PubMed  Google Scholar 

  57. Oremek GM, Rox S, Mitrou P, Sapoutzis N, Sauer-Eppel H . Tumor M2-PK levels in haematological malignancies. Anticancer Res 2003; 23 (Suppl 2A): 1135–1138.

    CAS  PubMed  Google Scholar 

  58. Mazurek S, Grimm H, Boschek CB, Vaupel P, Eigenbrodt E . Pyruvate kinase type M2: a crossroad in the tumor metabolome. Br J Nutr 2002; 87 (Suppl 1): S23–S29.

    Article  CAS  PubMed  Google Scholar 

  59. Eck HP, Drings P, Droge W . Plasma glutamate levels, lymphocyte reactivity and death rate in patients with bronchial carcinoma. J Cancer Res Clin Oncol 1989; 115: 571–574.

    Article  CAS  PubMed  Google Scholar 

  60. Grimm H, Tibell A, Norrlind B, Schott J, Bohle RM . Nutrition and allorejection impact of lipids. Transpl Immunol 1995; 3: 62–67.

    Article  CAS  PubMed  Google Scholar 

  61. Jiang WG, Bryce RP, Horrobin DF . Essential fatty acids: molecular and cellular basis of their anti-cancer action and clinical implications. Crit Rev Oncol Hematol 1998; 27: 179–209.

    Article  CAS  PubMed  Google Scholar 

  62. Seligmann H, Levi R, Konijn AM, Prokocimer M . Thiamine deficiency in patients with B-chronic lymphocytic leukaemia: a pilot study. Postgrad Med J 2001; 77: 582–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Daefler S, Krueger GR, Modder B, Deliconstantinos G . Cell membrane fluidity in chronic lymphocytic leukemia (CLL) lymphocytes and its relation to membrane receptor expression. J Exp Pathol 1987; 3: 147–154.

    CAS  PubMed  Google Scholar 

  64. Deliconstantinos G, Daefler S, Krueger GR . Cholesterol modulation of membrane fluidity and ecto-nucleotide triphosphatase activity in human normal and CLL lymphocytes. Anticancer Res 1987; 7 (3 Part B): 347–352.

    CAS  PubMed  Google Scholar 

  65. Inbar M, Shinitzky M . Cholesterol as a bioregulator in the development and inhibition of leukemia. Proc Natl Acad Sci USA 1974; 71: 4229–4231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen HW, Heiniger HJ . Stimulation of sterol synthesis in peripheral leukocytes of leukemic mice. Cancer Res 1974; 34: 1304–1307.

    CAS  PubMed  Google Scholar 

  67. Heiniger HJ, Chen HW, Applegate OL, Schacter LP, Schacter BZ, Anderson PN . Elevated synthesis of cholesterol in human leakemic cells. J Mol Med 1976; 2: 109–116.

    Google Scholar 

  68. Weinberg JB, Volkheimer AD, Mihovilovic M, Jiang N, Chen Y, Bond K et al. Apolipoprotein E genotype as a determinant of survival in chronic lymphocytic leukemia. Leukemia 2008; 22: 2184–2192.

    Article  CAS  PubMed  Google Scholar 

  69. Van Bockstaele F, Pede V, Janssens A, Callewaert F, Offner F, Verhasselt B et al. Lipoprotein lipase mRNA expression in whole blood is a prognostic marker in B cell chronic lymphocytic leukemia. Clin Chem 2007; 53: 204–212.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Spanish Ministerio de Ciencia e Innovación (MCINN, SAF2008-01845), Instituto de Salud Carlos III (PI061001/IF07/3611-1), Generalitat Valenciana (GVPRE/2008/193) for financial support and Bruker Biospin for technical and economic contributions. DAM is a Marie Curie International Incoming Fellow (PIIF-GA-2008-221484). BJ is supported by a Fondo de Investigación Sanitario Post Doctoral grant (CD2006/00133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Pineda-Lucena.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacIntyre, D., Jiménez, B., Lewintre, E. et al. Serum metabolome analysis by 1H-NMR reveals differences between chronic lymphocytic leukaemia molecular subgroups. Leukemia 24, 788–797 (2010). https://doi.org/10.1038/leu.2009.295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.295

Keywords

This article is cited by

Search

Quick links