Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapy

Alloreactive microenvironment after human hematopoietic cell transplantation induces genomic alterations in epithelium through an ROS-mediated mechanism: in vivo and in vitro study and implications to secondary neoplasia

Abstract

We hypothesized that chronic tissue stress due to interaction of alloreactive donor cells with host epithelium after allogeneic hematopoietic cell transplantation (allo-HCT) may cause genomic alterations. We therefore analyzed 176 buccal samples obtained from 71 unselected allotransplanted patients for microsatellite instability (MSI). MSI was observed in 52% of allotransplanted patients but never in 31 healthy or autotransplanted controls. The patient age, the donor age, a female-to-male transplantation and a low number of CD34+ cells in the graft were significantly correlated with genomic instability. There was a trend for increasing risk of MSI for patients who experienced severe graft-vs-host disease. Secondary malignancy was diagnosed in five (14%) of the MSI+ and only in one (3%) MSI patient. In an in vitro model of mutation analysis we found significant induction of frameshift mutations and DNA strand breaks in HaCaT keratinocytes co-cultured with mixed lymphocyte cultures (MLCs) but not after their exposure to interferon-γ, tumor necrosis factor-α, transforming growth factor-β (TGF-β), MLC supernatant, peripheral blood mononuclear cells (PBMCs) or phytohemagglutinin-stimulated PBMC. A reactive oxygen species-mediated mechanism is implicated. The in vivo and in vitro data of our study show that alloreactions after allo-HCT may induce genomic alterations in epithelium. Progress in understanding DNA damage and repair after allo-HCT can potentially provide molecular biomarkers and therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Little MT, Storb R . History of haematopoietic stem-cell transplantation. Nat Rev Cancer 2002; 2: 231–238.

    Article  CAS  Google Scholar 

  2. Teshima T, Ferrara JL . Understanding the alloresponse: new approaches to graft-versus-host disease prevention. Semin Hematol 2002; 39: 15–22.

    Article  Google Scholar 

  3. Zeiser R, Marks R, Bertz H, Finke J . Immunopathogenesis of acute graft-versus-host disease: implications for novel preventive and therapeutic strategies. Ann Hematol 2004; 83: 551–565.

    Article  CAS  Google Scholar 

  4. Curtis RE, Metayer C, Rizzo JD, Socie G, Sobocinski KA, Flowers ME et al. Impact of chronic GVHD therapy on the development of squamous-cell cancers after hematopoietic stem-cell transplantation: an international case–control study. Blood 2005; 105: 3802–3811.

    Article  CAS  Google Scholar 

  5. Deeg HJ, Socie G . Malignancies after hematopoietic stem cell transplantation: many questions, some answers. Blood 1998; 91: 1833–1844.

    CAS  Google Scholar 

  6. Wiseman H, Halliwell B . Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 1996; 313 (Part 1): 17–29.

    Article  CAS  Google Scholar 

  7. Weitzman SA, Gordon LI . Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood 1990; 76: 655–663.

    CAS  Google Scholar 

  8. Brentnall TA, Crispin DA, Bronner MP, Cherian SP, Hueffed M, Rabinovitch PS et al. Microsatellite instability in nonneoplastic mucosa from patients with chronic ulcerative colitis. Cancer Res 1996; 56: 1237–1240.

    CAS  Google Scholar 

  9. Ishitsuka T, Kashiwagi H, Konishi F . Microsatellite instability in inflamed and neoplastic epithelium in ulcerative colitis. J Clin Pathol 2001; 54: 526–532.

    Article  CAS  Google Scholar 

  10. Lee SH, Chang DK, Goel A, Boland CR, Bugbee W, Boyle DL et al. Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis. J Immunol 2003; 170: 2214–2220.

    Article  CAS  Google Scholar 

  11. Willenbucher RF, Aust DE, Chang CG, Zelman SJ, Ferrell LD, Moore II DH et al. Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am J Pathol 1999; 154: 1825–1830.

    Article  CAS  Google Scholar 

  12. Ellegren H . Microsatellites: simple sequences with complex evolution. Nat Rev Genet 2004; 5: 435–445.

    Article  CAS  Google Scholar 

  13. Spyridonidis A, Zeiser R, Wasch R, Bertz H, Finke J . Capillary electrophoresis for chimerism monitoring by PCR amplification of microsatellite markers after allogeneic hematopoietic cell transplantation. Clin Transplant 2005; 19: 350–356.

    Article  Google Scholar 

  14. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998; 58: 5248–5257.

    CAS  Google Scholar 

  15. de la Chapelle A . Microsatellite instability. N Engl J Med 2003; 349: 209–210.

    Article  Google Scholar 

  16. Faber P, Fisch P, Waterhouse M, Schmitt-Graff A, Bertz H, Finke J et al. Frequent genomic alterations in epithelium measured by microsatellite instability following allogeneic hematopoietic cell transplantation in humans. Blood 2006; 107: 3389–3396.

    Article  CAS  Google Scholar 

  17. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE . Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988; 106: 761–771.

    Article  CAS  Google Scholar 

  18. Kahn SM, Klein MG, Jiang W, Xing WQ, Xu DB, Perucho M et al. Design of a selectable reporter for the detection of mutations in mammalian simple repeat sequences. Carcinogenesis 1995; 16: 1223–1228.

    Article  CAS  Google Scholar 

  19. Pear WS, Nolan GP, Scott ML, Baltimore D . Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 1993; 90: 8392–8396.

    Article  CAS  Google Scholar 

  20. Zienolddiny S, Ryberg D, Haugen A . Induction of microsatellite mutations by oxidative agents in human lung cancer cell lines. Carcinogenesis 2000; 21: 1521–1526.

    Article  CAS  Google Scholar 

  21. Bae DS, Gennings C, Carter Jr WH, Yang RS, Campain JA . Toxicological interactions among arsenic, cadmium, chromium, and lead in human keratinocytes. Toxicol Sci 2001; 63: 132–142.

    Article  CAS  Google Scholar 

  22. Boukamp P, Popp S, Bleuel K, Tomakidi E, Burkle A, Fusenig NE . Tumorigenic conversion of immortal human skin keratinocytes (HaCaT) by elevated temperature. Oncogene 1999; 18: 5638–5645.

    Article  CAS  Google Scholar 

  23. Savini I, Catani MV, Rossi A, Duranti G, Ranalli M, Melino G et al. Vitamin C recycling is enhanced in the adaptive response to leptin-induced oxidative stress in keratinocytes. J Invest Dermatol 2003; 121: 786–793.

    Article  CAS  Google Scholar 

  24. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP . CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 1999; 96: 8681–8686.

    Article  CAS  Google Scholar 

  25. Little JB . Genomic instability and radiation. J Radiol Prot 2003; 23: 173–181.

    Article  CAS  Google Scholar 

  26. Evens AM, Mehta J, Gordon LI . Rust and corrosion in hematopoietic stem cell transplantation: the problem of iron and oxidative stress. Bone Marrow Transplant 2004; 34: 561–571.

    Article  CAS  Google Scholar 

  27. Zhivotovsky B, Kroemer G . Apoptosis and genomic instability. Nat Rev Mol Cell Biol 2004; 5: 752–762.

    Article  CAS  Google Scholar 

  28. Halford S, Sasieni P, Rowan A, Wasan H, Bodmer W, Talbot I et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res 2002; 62: 53–57.

    CAS  Google Scholar 

  29. Samowitz WS, Slattery ML . Regional reproducibility of microsatellite instability in sporadic colorectal cancer. Genes Chromosomes Cancer 1999; 26: 106–114.

    Article  CAS  Google Scholar 

  30. Coolbaugh-Murphy M, Maleki A, Ramagli L, Frazier M, Lichtiger B, Monckton DG et al. Estimating mutant microsatellite allele frequencies in somatic cells by small-pool PCR. Genomics 2004; 84: 419–430.

    Article  CAS  Google Scholar 

  31. Gahrton G . Risk assessment in haematopoietic stem cell transplantation: impact of donor–recipient sex combination in allogeneic transplantation. Best Pract Res Clin Haematol 2007; 20: 219–229.

    Article  Google Scholar 

  32. Marks R, Potthoff K, Hahn J, Ihorst G, Bertz H, Spyridonidis A et al. Reduced-toxicity conditioning with fludarabine, BCNU, and melphalan in allogeneic hematopoietic cell transplantation: particular activity against advanced hematologic malignancies. Blood 2008; 112: 415–425.

    Article  CAS  Google Scholar 

  33. Horwitz ME, Sullivan KM . Chronic graft-versus-host disease. Blood Rev 2006; 20: 15–27.

    Article  Google Scholar 

  34. Kollman C, Howe CW, Anasetti C, Antin JH, Davies SM, Filipovich AH et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood 2001; 98: 2043–2051.

    Article  CAS  Google Scholar 

  35. Beck RC, Wlodarski M, Gondek L, Theil KS, Tuthill RJ, Sobeck R et al. Efficient identification of T-cell clones associated with graft-versus-host disease in target tissue allows for subsequent detection in peripheral blood. Br J Haematol 2005; 129: 411–419.

    Article  CAS  Google Scholar 

  36. O’Keefe CL, Gondek L, Davis R, Kuczkowski E, Sobecks RM, Rodriguez A et al. Molecular analysis of alloreactive CTL post-hemopoietic stem cell transplantation. J Immunol 2007; 179: 2013–2022.

    Article  Google Scholar 

  37. Suchin EJ, Langmuir PB, Palmer E, Sayegh MH, Wells AD, Turka LA . Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol 2001; 166: 973–981.

    Article  CAS  Google Scholar 

  38. Marin L, Minguela A, Torio A, Moya-Quiles MR, Muro M, Montes-Ares O et al. Flow cytometric quantification of apoptosis and proliferation in mixed lymphocyte culture. Cytometry A 2003; 51: 107–118.

    Article  Google Scholar 

  39. Scheinberg P, Price DA, Ambrozak DR, Barrett AJ, Douek DC . Alloreactive T cell clonotype recruitment in a mixed lymphocyte reaction: implications for graft engineering. Exp Hematol 2006; 34: 788–795.

    Article  CAS  Google Scholar 

  40. Wang XN, Collin M, Sviland L, Marshall S, Jackson G, Schulz U et al. Skin explant model of human graft-versus-host disease: prediction of clinical outcome and correlation with biological risk factors. Biol Blood Marrow Transplant 2006; 12: 152–159.

    Article  Google Scholar 

  41. Seidelin JB, Nielsen OH . Continuous cytokine exposure of colonic epithelial cells induces DNA damage. Eur J Gastroenterol Hepatol 2005; 17: 363–369.

    Article  CAS  Google Scholar 

  42. Gasche C, Chang CL, Rhees J, Goel A, Boland CR . Oxidative stress increases frameshift mutations in human colorectal cancer cells. Cancer Res 2001; 61: 7444–7448.

    CAS  Google Scholar 

  43. Jackson AL, Chen R, Loeb LA . Induction of microsatellite instability by oxidative DNA damage. Proc Natl Acad Sci USA 1998; 95: 12468–12473.

    Article  CAS  Google Scholar 

  44. Hofseth LJ, Khan MA, Ambrose M, Nikolayeva O, Xu-Welliver M, Kartalou M et al. The adaptive imbalance in base excision-repair enzymes generates microsatellite instability in chronic inflammation. J Clin Invest 2003; 112: 1887–1894.

    Article  CAS  Google Scholar 

  45. Chang CL, Marra G, Chauhan DP, Ha HT, Chang DK, Ricciardiello L et al. Oxidative stress inactivates the human DNA mismatch repair system. Am J Physiol Cell Physiol 2002; 283: C148–C154.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge P Faber for excellent work in setting the in vitro system, C Zouvelou for help in p53 mutation analysis and A Klamargias for help in statistical analysis. We thank S Krüger (Freiburg), G Oikonomopoulou, N Zoudiari and D Kokkinou (Patras) for excellent technical assistance and to the transplantation teams at Freiburg and Patras University for the dedicated patient care. We also thank Prof R Mertelsmann (Freiburg) for continuous support. This work was supported by grants from the Landesstiftung Baden Württemberg and the IKY- DAAD program to AS and JF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Spyridonidis.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Themeli, M., Petrikkos, L., Waterhouse, M. et al. Alloreactive microenvironment after human hematopoietic cell transplantation induces genomic alterations in epithelium through an ROS-mediated mechanism: in vivo and in vitro study and implications to secondary neoplasia. Leukemia 24, 536–543 (2010). https://doi.org/10.1038/leu.2009.284

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.284

Keywords

This article is cited by

Search

Quick links