Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differentiation

Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation

Abstract

Acute myeloid leukemia (AML) involves a block in terminal differentiation of the myeloid lineage and uncontrolled proliferation of a progenitor state. Using phorbol myristate acetate (PMA), it is possible to overcome this block in THP-1 cells (an M5-AML containing the MLL-MLLT3 fusion), resulting in differentiation to an adherent monocytic phenotype. As part of FANTOM4, we used microarrays to identify 23 microRNAs that are regulated by PMA. We identify four PMA-induced microRNAs (mir-155, mir-222, mir-424 and mir-503) that when overexpressed cause cell-cycle arrest and partial differentiation and when used in combination induce additional changes not seen by any individual microRNA. We further characterize these pro-differentiative microRNAs and show that mir-155 and mir-222 induce G2 arrest and apoptosis, respectively. We find mir-424 and mir-503 are derived from a polycistronic precursor mir-424-503 that is under repression by the MLL-MLLT3 leukemogenic fusion. Both of these microRNAs directly target cell-cycle regulators and induce G1 cell-cycle arrest when overexpressed in THP-1. We also find that the pro-differentiative mir-424 and mir-503 downregulate the anti-differentiative mir-9 by targeting a site in its primary transcript. Our study highlights the combinatorial effects of multiple microRNAs within cellular systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Suzuki H, Forrest AR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 2009; 41: 553–562.

    Article  CAS  Google Scholar 

  2. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K . Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 1980; 26: 171–176.

    Article  CAS  Google Scholar 

  3. Odero MD, Zeleznik-Le NJ, Chinwalla V, Rowley JD . Cytogenetic and molecular analysis of the acute monocytic leukemia cell line THP-1 with an MLL-AF9 translocation. Genes Chromosomes Cancer 2000; 29: 333–338.

    Article  CAS  Google Scholar 

  4. Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 1982; 42: 1530–1536.

    CAS  Google Scholar 

  5. Standart N, Jackson RJ . MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev 2007; 21: 1975–1982.

    Article  CAS  Google Scholar 

  6. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38: 228–233.

    Article  CAS  Google Scholar 

  7. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279: 52361–52365.

    Article  CAS  Google Scholar 

  8. Hohjoh H, Fukushima T . Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells. Biochem Biophys Res Commun 2007; 362: 360–367.

    Article  CAS  Google Scholar 

  9. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005; 19: 489–501.

    Article  CAS  Google Scholar 

  10. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ et al. Dicer is essential for mouse development. Nat Genet 2003; 35: 215–217.

    Article  CAS  Google Scholar 

  11. O’Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U, Enright AJ et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev 2007; 21: 1999–2004.

    Article  Google Scholar 

  12. Lee YS, Dutta A . The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007; 21: 1025–1030.

    Article  CAS  Google Scholar 

  13. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H . Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 2007; 104: 15472–15477.

    Article  CAS  Google Scholar 

  14. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005; 65: 9628–9632.

    Article  CAS  Google Scholar 

  15. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 2005; 207: 243–249.

    Article  CAS  Google Scholar 

  16. Severin J, Waterhouse AM, Kawaji H, Lassmann T, van Nimwegen E, Balwierz PJ et al. FANTOM4 EdgeExpressDB: an integrated database of promoters, genes, microRNAs, expression dynamics and regulatory interactions. Genome Biol 2009; 10: R39.

    Article  Google Scholar 

  17. Rosa A, Ballarino M, Sorrentino A, Sthandier O, De Angelis FG, Marchioni M et al. The interplay between the master transcription factor PU 1 and miR 424 regulates human monocyte/macrophage differentiation. Proc Natl Acad Sci USA 2007; 104: 19849–19854.

    Article  CAS  Google Scholar 

  18. Wang Q, Huang Z, Xue H, Jin C, Ju XL, Han JD et al. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 2008; 111: 588–595.

    Article  CAS  Google Scholar 

  19. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 2005; 102: 18081–18086.

    Article  CAS  Google Scholar 

  20. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 2006; 103: 7024–7029.

    Article  CAS  Google Scholar 

  21. Georgantas 3rd RW, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 2007; 104: 2750–2755.

    Article  CAS  Google Scholar 

  22. Mizuno Y, Tokuzawa Y, Ninomiya Y, Yagi K, Yatsuka-Kanesaki Y, Suda T et al. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett 2009; 583: 2263–2268.

    Article  CAS  Google Scholar 

  23. Nie K, Gomez M, Landgraf P, Garcia JF, Liu Y, Tan LH et al. MicroRNA-mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: a potential pathogenetic lesion in Hodgkin lymphomas. Am J Pathol 2008; 173: 242–252.

    Article  CAS  Google Scholar 

  24. Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 2007; 9: 775–787.

    Article  CAS  Google Scholar 

  25. Taft RJ, Glazov EA, Cloonan N, Simons C, Stephen S, Faulkner GJ et al. Tiny RNAs associated with transcription start sites in animals. Nat Genet 2009; 41: 572–578.

    Article  CAS  Google Scholar 

  26. Smyth GK, Yang YH, Speed T . Statistical issues in cDNA microarray data analysis. Methods Mol Biol 2003; 224: 111–136.

    CAS  Google Scholar 

  27. Beissbarth T, Speed TP . GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 2004; 20: 1464–1465.

    Article  CAS  Google Scholar 

  28. Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 2008; 36: 5391–5404.

    Article  CAS  Google Scholar 

  29. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  Google Scholar 

  30. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353: 1793–1801.

    Article  CAS  Google Scholar 

  31. Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 2007; 27: 2240–2252.

    Article  CAS  Google Scholar 

  32. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M . Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 2007; 8: 69.

    Article  Google Scholar 

  33. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  Google Scholar 

  34. Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2004; 2: E7.

    Article  Google Scholar 

  35. Martinez FO, Gordon S, Locati M, Mantovani A . Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006; 177: 7303–7311.

    Article  CAS  Google Scholar 

  36. Edgar R, Domrachev M, Lash AE . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207–210.

    Article  CAS  Google Scholar 

  37. Martino V, Tonelli R, Montemurro L, Franzoni M, Marino F, Fazzina R et al. Down-regulation of MLL-AF9, MLL and MYC expression is not obligatory for monocyte-macrophage maturation in AML-M5 cell lines carrying t(9;11)(p22;q23). Oncol Rep 2006; 15: 207–211.

    CAS  Google Scholar 

  38. Pession A, Martino V, Tonelli R, Beltramini C, Locatelli F, Biserni G et al. MLL-AF9 oncogene expression affects cell growth but not terminal differentiation and is downregulated during monocyte-macrophage maturation in AML-M5 THP-1 cells. Oncogene 2003; 22: 8671–8676.

    Article  CAS  Google Scholar 

  39. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  Google Scholar 

  40. Kang S, Dong S, Gu TL, Guo A, Cohen MS, Lonial S et al. FGFR3 activates RSK2 to mediate hematopoietic transformation through tyrosine phosphorylation of RSK2 and activation of the MEK/ERK pathway. Cancer Cell 2007; 12: 201–214.

    Article  CAS  Google Scholar 

  41. Liu D, Yang X, Songyang Z . Identification of CISK, a new member of the SGK kinase family that promotes IL-3-dependent survival. Curr Biol 2000; 10: 1233–1236.

    Article  CAS  Google Scholar 

  42. Basso AD, Mirza A, Liu G, Long BJ, Bishop WR, Kirschmeier P . The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J Biol Chem 2005; 280: 31101–31108.

    Article  CAS  Google Scholar 

  43. Wang W, Wang CY, Dong JH, Chen X, Zhang M, Zhao G . Identification of effective siRNA against K-ras in human pancreatic cancer cell line MiaPaCa-2 by siRNA expression cassette. World J Gastroenterol 2005; 11: 2026–2031.

    Article  CAS  Google Scholar 

  44. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63.

    Article  CAS  Google Scholar 

  45. Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature 2007; 450: 1096–1099.

    Article  CAS  Google Scholar 

  46. O’Sullivan AW, Wang JH, Redmond HP . The role of P38 MAPK and PKC in BLP induced TNF-alpha release, apoptosis, and NFkappaB activation in THP-1 monocyte cells. J Surg Res 2009; 151: 138–144.

    Article  Google Scholar 

  47. Astrinidis A, Senapedis W, Henske EP . Hamartin, the tuberous sclerosis complex 1 gene product, interacts with polo-like kinase 1 in a phosphorylation-dependent manner. Hum Mol Genet 2006; 15: 287–297.

    Article  CAS  Google Scholar 

  48. Kitagawa K, Abdulle R, Bansal PK, Cagney G, Fields S, Hieter P . Requirement of Skp1-Bub1 interaction for kinetochore-mediated activation of the spindle checkpoint. Mol Cell 2003; 11: 1201–1213.

    Article  CAS  Google Scholar 

  49. le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 2007; 26: 3699–3708.

    Article  CAS  Google Scholar 

  50. Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, Croce CM et al. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 2008; 68: 2773–2780.

    Article  CAS  Google Scholar 

  51. Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 2007; 14: 791–798.

    Article  CAS  Google Scholar 

  52. Mayoral RJ, Pipkin ME, Pachkov M, van Nimwegen E, Rao A, Monticelli S . MicroRNA-221-222 regulate the cell cycle in mast cells. J Immunol 2009; 182: 433–445.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the following: a research grant for RIKEN Omics Science Center from MEXT to YH and a grant of the Genome Network Project from the Ministry of Education, Culture, Sports, Science and Technology, Japan to YH (http://genomenetwork.nig.ac.jp/index_e.html). We also thank all of the members in the FANTOM consortium for fruitful collaboration and cooperation, in particular thanks to F. Hori for information collection and C Wells and J Quackenbush for discussions on the microRNA microarrays. ARRF was supported by a CJ Martin Fellowship from the Australian NHMRC (ID 428261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A R R Forrest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrest, A., Kanamori-Katayama, M., Tomaru, Y. et al. Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 24, 460–466 (2010). https://doi.org/10.1038/leu.2009.246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.246

Keywords

This article is cited by

Search

Quick links