Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells

Abstract

Resistance to the BCR-ABL tyrosine kinase inhibitor imatinib poses a pressing challenge in treating chronic myeloid leukemia (CML). This resistance is often caused by point mutations in the ABL kinase domain or by overexpression of LYN. The second-generation BCR-ABL inhibitor INNO-406 is known to inhibit most BCR-ABL mutants and LYN efficiently. Knowledge of its full target spectrum would provide the molecular basis for potential side effects or suggest novel therapeutic applications and possible combination therapies. We have performed an unbiased chemical proteomics native target profile of INNO-406 in CML cells combined with functional assays using 272 recombinant kinases thereby identifying several new INNO-406 targets. These include the kinases ZAK, DDR1/2 and various ephrin receptors. The oxidoreductase NQO2, inhibited by both imatinib and nilotinib, is not a relevant target of INNO-406. Overall, INNO-406 has an improved activity over imatinib but a slightly broader target profile than both imatinib and nilotinib. In contrast to dasatinib and bosutinib, INNO-406 does not inhibit all SRC kinases and most TEC family kinases and is therefore expected to elicit fewer side effects. Altogether, these properties may make INNO-406 a valuable component in the drug arsenal against CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kimura S, Naito H, Segawa H, Kuroda J, Yuasa T, Sato K et al. NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood 2005; 106: 3948–3954.

    Article  CAS  Google Scholar 

  2. Wu J, Meng F, Kong LY, Peng Z, Ying Y, Bornmann WG et al. Association between imatinib-resistant BCR-ABL mutation-negative leukemia and persistent activation of LYN kinase. J Natl Cancer Inst 2008; 100: 926–939.

    Article  CAS  Google Scholar 

  3. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003; 101: 690–698.

    Article  CAS  Google Scholar 

  4. Ptasznik A, Nakata Y, Kalota A, Emerson SG, Gewirtz AM . Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells. Nat Med 2004; 10: 1187–1189.

    Article  CAS  Google Scholar 

  5. Pan J, Quintas-Cardama A, Manshouri T, Cortes J, Kantarjian H, Verstovsek S . Sensitivity of human cells bearing oncogenic mutant kit isoforms to the novel tyrosine kinase inhibitor INNO-406. Cancer Sci 2007; 98: 1223–1225.

    Article  CAS  Google Scholar 

  6. Yokota A, Kimura S, Masuda S, Ashihara E, Kuroda J, Sato K et al. INNO-406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system, and cyclosporine A augments its in vivo activity. Blood 2007; 109: 306–314.

    Article  CAS  Google Scholar 

  7. Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 2007; 25: 1035–1044.

    Article  CAS  Google Scholar 

  8. Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 2007; 110: 4055–4063.

    Article  CAS  Google Scholar 

  9. Remsing Rix LL, Rix U, Colinge J, Hantschel O, Bennett KL, Stranzl T et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 2009; 23: 477–485.

    Article  CAS  Google Scholar 

  10. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006; 354: 2531–2541.

    Article  CAS  Google Scholar 

  11. Hantschel O, Rix U, Schmidt U, Burckstummer T, Kneidinger M, Schutze G et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc Natl Acad Sci USA 2007; 104: 13283–13288.

    Article  CAS  Google Scholar 

  12. Maxwell SA, Kurzrock R, Parsons SJ, Talpaz M, Gallick GE, Kloetzer WS et al. Analysis of P210bcr-abl tyrosine protein kinase activity in various subtypes of Philadelphia chromosome-positive cells from chronic myelogenous leukemia patients. Cancer Res 1987; 47: 1731–1739.

    CAS  Google Scholar 

  13. Wang X, Mader MM, Toth JE, Yu X, Jin N, Campbell RM et al. Complete inhibition of anisomycin and UV radiation but not cytokine induced JNK and p38 activation by an aryl-substituted dihydropyrrolopyrazole quinoline and mixed lineage kinase 7 small interfering RNA. J Biol Chem 2005; 280: 19298–19305.

    Article  CAS  Google Scholar 

  14. Winger JA, Hantschel O, Superti-Furga G, Kuriyan J . The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). BMC Struct Biol 2009; 9: 7.

    Article  Google Scholar 

  15. Corless CL, Schroeder A, Griffith D, Town A, McGreevey L, Harrell P et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 2005; 23: 5357–5364.

    Article  CAS  Google Scholar 

  16. Horio T, Hamasaki T, Inoue T, Wakayama T, Itou S, Naito H et al. Structural factors contributing to the Abl/Lyn dual inhibitory activity of 3-substituted benzamide derivatives. Bioorg Med Chem Lett 2007; 17: 2712–2717.

    Article  CAS  Google Scholar 

  17. Schirle M, Heurtier M-A, Kuster B . Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Mol Cell 2003; 2: 1297–1305.

    CAS  Google Scholar 

  18. Smith DL, Evans CA, Pierce A, Gaskell SJ, Whetton AD . Changes in the proteome associated with the action of Bcr-Abl tyrosine kinase are not related to transcriptional regulation. Mol Cell Proteomics 2002; 1: 876–884.

    Article  CAS  Google Scholar 

  19. Villalva C, Sorel N, Bonnet ML, Guilhot J, Mayeur-Rousse C, Guilhot F et al. Neutrophil gelatinase-associated lipocalin expression in chronic myeloid leukemia. Leuk Lymphoma 2008; 49: 984–988.

    Article  CAS  Google Scholar 

  20. Leng X, Lin H, Ding T, Wang Y, Wu Y, Klumpp S et al. Lipocalin 2 is required for BCR-ABL-induced tumorigenesis. Oncogene 2008; 27: 6110–6119.

    Article  CAS  Google Scholar 

  21. Day E, Waters B, Spiegel K, Alnadaf T, Manley PW, Buchdunger E et al. Inhibition of collagen-induced discoidin domain receptor 1 and 2 activation by imatinib, nilotinib and dasatinib. Eur J Pharmacol 2008; 599: 44–53.

    Article  CAS  Google Scholar 

  22. Skorski T, Nieborowska-Skorska M, Szczylik C, Kanakaraj P, Perrotti D, Zon G et al. C-RAF-1 serine/threonine kinase is required in BCR/ABL-dependent and normal hematopoiesis. Cancer Res 1995; 55: 2275–2278.

    CAS  Google Scholar 

  23. Weisberg E, Wright RD, Jiang J, Ray A, Moreno D, Manley PW et al. Effects of PKC412, nilotinib, and imatinib against GIST-associated PDGFRA mutants with differential imatinib sensitivity. Gastroenterology 2006; 131: 1734–1742.

    Article  CAS  Google Scholar 

  24. Pasquale EB . Eph-ephrin bidirectional signaling in physiology and disease. Cell 2008; 133: 38–52.

    Article  CAS  Google Scholar 

  25. Lackmann M, Boyd AW . Eph, a protein family coming of age: more confusion, insight, or complexity? Sci Signal 2008; 1: re2.

    Article  Google Scholar 

  26. Ireton RC, Chen J . EphA2 receptor tyrosine kinase as a promising target for cancer therapeutics. Curr Cancer Drug Targets 2005; 5: 149–157.

    Article  CAS  Google Scholar 

  27. Jandhyala DM, Ahluwalia A, Obrig T, Thorpe CM . ZAK: a MAP3Kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression. Cell Microbiol 2008; 10: 1468–1477.

    Article  CAS  Google Scholar 

  28. Huang CY, Chueh PJ, Tseng CT, Liu KY, Tsai HY, Kuo WW et al. ZAK re-programs atrial natriuretic factor expression and induces hypertrophic growth in H9c2 cardiomyoblast cells. Biochem Biophys Res Commun 2004; 324: 973–980.

    Article  CAS  Google Scholar 

  29. Cho YY, Bode AM, Mizuno H, Choi BY, Choi HS, Dong Z . A novel role for mixed-lineage kinase-like mitogen-activated protein triple kinase alpha in neoplastic cell transformation and tumor development. Cancer Res 2004; 64: 3855–3864.

    Article  CAS  Google Scholar 

  30. Niwa T, Asaki T, Kimura S . NS-187 (INNO-406), a Bcr-Abl/Lyn dual tyrosine kinase inhibitor. Anal Chem Insights 2007; 2: 93–106.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Leukemia and Lymphoma Society (Grant number 5081–05), the Austrian Federal Ministry for Science and Research (BMWF) under the GEN-AU program (GZ200.142/I-VI/I/2006 and GZ200.145/I-VI/I/2006), the Austrian Science Fund (FWF; P18737-B11), the Austrian National Bank (ÖNB) and the Austrian Academy of Sciences (ÖAW). We thank Norbert Venturini for preparation of the SDS–PAGE gels and Florian Grebien for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Superti-Furga.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rix, U., Remsing Rix, L., Terker, A. et al. A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells. Leukemia 24, 44–50 (2010). https://doi.org/10.1038/leu.2009.228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.228

Keywords

This article is cited by

Search

Quick links