Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Involvement of RhoH GTPase in the development of B-cell chronic lymphocytic leukemia

Abstract

RhoH is a hematopoietic-specific, GTPase-deficient member of the Rho GTPase family that functions as a regulator of thymocyte development and T-cell receptor signaling by facilitating localization of zeta-chain-associated protein kinase 70 (ZAP70) to the immunological synapse. Here we investigated the function of RhoH in the B-cell lineage. B-cell receptor (BCR) signaling was intact in Rhoh−/− mice. Because RhoH interacts with ZAP70, which is a prognostic factor in B-cell chronic lymphocytic leukemia (CLL), we analyzed the mRNA levels of RhoH in primary human CLL cells and showed a 2.3-fold higher RhoH expression compared with normal B cells. RhoH expression in CLL positively correlated with the protein levels of ZAP70. Deletion of Rhoh in a murine model of CLL (Eμ-TCL1Tg mice) significantly delayed the accumulation of CD5+IgM+ leukemic cells in peripheral blood and the leukemic burden in the peritoneal cavity, bone marrow and spleen of Rhoh−/− mice compared with their Rhoh+/+ counterparts. Phosphorylation of AKT and ERK in response to BCR stimulation was notably decreased in Eμ-TCL1Tg;Rhoh−/− splenocytes. These data suggest that RhoH has a function in the progression of CLL in a murine model and show RhoH expression is altered in human primary CLL samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Eng J Med 2005; 352: 804–815.

    Article  CAS  Google Scholar 

  2. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  Google Scholar 

  3. Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004; 351: 893–901.

    Article  CAS  Google Scholar 

  4. Chen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 2002; 100: 4609–4614.

    Article  CAS  Google Scholar 

  5. Chen L, Apgar J, Huynh L, Dicker F, Giago-McGahan T, Rassenti L et al. ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood 2005; 105: 2036–2041.

    Article  CAS  Google Scholar 

  6. Chen L, Huynh L, Apgar J, Tang L, Rassenti L, Weiss A et al. ZAP-70 enhances IgM signaling independent of its kinase activity in chronic lymphocytic leukemia. Blood 2008; 111: 2685–2692.

    Article  CAS  Google Scholar 

  7. Williams DA, Zheng Y, Cancelas JA . Rho GTPases and regulation of hematopoietic stem cell localization. Methods Enzymol 2008; 439: 365–393.

    Article  CAS  Google Scholar 

  8. Li X, Bu X, Lu B, Avraham H, Flavell RA, Lim B . The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol Cell Biol 2002; 22: 1158–1171.

    Article  CAS  Google Scholar 

  9. Gu Y, Chae H, Siefring J, Jast iJ, Hildeman D, Williams DA . RhoH, a GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat Immunol 2006; 7: 1182–1190.

    Article  CAS  Google Scholar 

  10. Dorn T, Kuhn U, Bungartz G, Stiller S, Bauer M, Ellwart J et al. RhoH is important for positive thymocyte selection and T-cell receptor signaling. Blood 2007; 109: 2346–2355.

    Article  CAS  Google Scholar 

  11. Dallery E, Galiegue-Zouitina S, Collyn-d'Hooghe M, Quief S, Denis C, Hildebrand MP et al. TTF, a gene encoding a novel small G protein, fuses to the lymphoma-associated LAZ3 gene by t(3;4) chromosomal translocation. Oncogene 1995; 10: 2171–2178.

    CAS  Google Scholar 

  12. Preudhomme C, Roumier C, Hildebrand MP, Dallery-Prudhomme E, Lantoine D, Lai JL et al. Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma. Oncogene 2000; 19: 2023–2032.

    Article  CAS  Google Scholar 

  13. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001; 412: 341–346.

    Article  CAS  Google Scholar 

  14. Hiraga J, Katsumi A, Iwasaki T, Abe A, Kiyoi H, Matsushita T et al. Prognostic analysis of aberrant somatic hypermutation of RhoH gene in diffuse large B cell lymphoma. Leukemia 2007; 21: 1846–1847.

    Article  CAS  Google Scholar 

  15. Gaidano G, Pasqualucci L, Capello D, Berra E, Deambrogi C, Rossi D et al. Aberrant somatic hypermutation in multiple subtypes of AIDS-associated non-Hodgkin lymphoma. Blood 2003; 102: 1833–1841.

    Article  CAS  Google Scholar 

  16. Montesinos-Rongen M, Van Roost D, Schaller C, Wiestler OD, Deckert M . Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation. Blood 2004; 103: 1869–1875.

    Article  CAS  Google Scholar 

  17. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960.

    Article  CAS  Google Scholar 

  18. Johnson AJ, Lucas DM, Muthusamy N, Smith LL, Edwards RB, De Lay MD et al. Characterization of the TCL-1 transgenic mouse as a preclinical drug development tool for human chronic lymphocytic leukemia. Blood 2006; 108: 1334–1338.

    Article  CAS  Google Scholar 

  19. Verbeke G, Molenberghs G . Linear Mixed Models for Longitudinal Data. Springer-Verlag: New York, 2000.

    Google Scholar 

  20. SAS Institute, Inc. SAS/STAT User's Guide, vol. 1, 2, 3. SAS Institute, Inc.: Cary, NC, 2002.

  21. Yan XJ, Albesiano E, Zanesi N, Yancopoulos S, Sawyer A, Romano E et al. B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2006; 103: 11713–11718.

    Article  CAS  Google Scholar 

  22. Gu Y, Jasti AC, Jansen M, Siefring JE . RhoH, a hematopoietic-specific Rho GTPase, regulates proliferation, survival, migration, and engraftment of hematopoietic progenitor cells. Blood 2005; 105: 1467–1475.

    Article  CAS  Google Scholar 

  23. Scielzo C, Camporeale A, Geuna M, Alessio M, Poggi A, Zocchi MR et al. ZAP-70 is expressed by normal and malignant human B-cell subsets of different maturational stage. Leukemia 2006; 20: 689–695.

    Article  CAS  Google Scholar 

  24. Law CL, Sidorenko SP, Chandran KA, Draves KE, Chan AC, Weiss A et al. Molecular cloning of human Syk. A B cell protein-tyrosine kinase associated with the surface immunoglobulin M-B cell receptor complex. J Biol Chem 1994; 269: 12310–12319.

    CAS  Google Scholar 

  25. Chan AC, van Oers NS, Tran A, Turka L, Law CL, Ryan JC et al. Differential expression of ZAP-70 and Syk protein tyrosine kinases, and the role of this family of protein tyrosine kinases in TCR signaling. J Immunol 1994; 152: 4758–4766.

    CAS  Google Scholar 

  26. Latour S, Chow LM, Veillette A . Differential intrinsic enzymatic activity of Syk and Zap-70 protein-tyrosine kinases. J Biol Chem 1996; 271: 22782–22790.

    Article  CAS  Google Scholar 

  27. Zoller KE, MacNeil IA, Brugge JS . Protein tyrosine kinases Syk and ZAP-70 display distinct requirements for Src family kinases in immune response receptor signal transduction. J Immunol 1997; 158: 1650–1659.

    CAS  Google Scholar 

  28. Narducci MG, Pescarmona E, Lazzeri C, Signoretti S, Lavinia AM, Remotti D et al. Regulation of TCL1 expression in B- and T-cell lymphomas and reactive lymphoid tissues. Cancer Res 2000; 60: 2095–2100.

    CAS  Google Scholar 

  29. Herling M, Patel KA, Khalili J, Schlette E, Kobayashi R, Medeiros LJ et al. TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state. Leukemia 2006; 20: 280–285.

    Article  CAS  Google Scholar 

  30. Pekarsky Y, Koval A, Hallas C, Bichi R, Tresini M, Malstrom S et al. Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci USA 2000; 97: 3028–3033.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (Grant CA113969 to DAW), the Deutsche Forschungsgemeinschaft (RA 1705/1-1 to IR), the St Baldrick's Foundation (LUWM) and the Leukemia and Lymphoma Society (JCB). Patient samples and IGHV sequence data were obtained through the CLL Research Consortium (CRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Williams.

Additional information

YG, JAC, TM and DAW designed research and provided scientific advice; IR, AS-A, DZD, LUWM and VS performed research; IR, AS-A, DZD, LUWM and PJ analyzed data; CMC, DML and JCB contributed vital new reagents; IR, AS-A and DAW wrote the paper.

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Aguilera, A., Rattmann, I., Drew, D. et al. Involvement of RhoH GTPase in the development of B-cell chronic lymphocytic leukemia. Leukemia 24, 97–104 (2010). https://doi.org/10.1038/leu.2009.217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.217

Keywords

This article is cited by

Search

Quick links