Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapy

FIP1L1-PDGFRα D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFRα T674I eosinophilic leukemia with single agent sorafenib

Abstract

Chronic eosinophilic leukemia (CEL) is a rare myeloproliferative neoplasm characterized by the FIP1L1-PDGFRA fusion gene, variant PDGFRA fusions or other genetic lesions. Most FIP1L1–PDGFRA positive patients enjoy durable and complete molecular responses to low-dose imatinib (Glivec/Gleevec). However, resistance mediated by a T674I mutation in the ATP-binding pocket of PDGFRA has been reported in advanced disease, and sorafenib, a potent inhibitor of RAF-1, B-RAF, VEGFR and PDGFR, is active against this mutant in vitro. We describe a case of FIP1L1-PDGFRα T674I CEL in blast crisis that responded to sorafenib (Nexavar). However, this clinical response was short-lived because of the rapid emergence of a FIP1L1-PDGFRα D842V mutant. An N-Nitroso-N-ethylurea-mutagenesis screen indeed identified this mutant as a major sorafenib-resistant mutant. In vitro, the novel FIP1L1-PDGFRα D842V mutant is highly resistant to sorafenib, imatinib, dasatinib (Sprycell) and PKC412 (Midostaurin). Thus, sorafenib is clinically active in imatinib-resistant FIP1L1-PDGFRα T674I CEL, but the rapid emergence of other mutants may limit the response duration. The identification of new PDGFR inhibitors will be required to overcome resistance by this D842V mutant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003; 348: 1201–1214.

    Article  CAS  Google Scholar 

  2. Vandenberghe P, Wlodarska I, Michaux L, Zachee P, Boogaerts M, Vanstraelen D et al. Clinical and molecular features of FIP1L1-PDFGRA (+) chronic eosinophilic leukemias. Leukemia 2004; 18: 734–742.

    Article  CAS  Google Scholar 

  3. Pardanani A, Ketterling RP, Brockman SR, Flynn HC, Paternoster SF, Shearer BM et al. CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood 2003; 102: 3093–3096.

    Article  CAS  Google Scholar 

  4. Metzgeroth G, Walz C, Score J, Siebert R, Schnittger S, Haferlach C et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia 2007; 21: 1183–1188.

    Article  CAS  Google Scholar 

  5. Tefferi A, Vardiman JW . Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 14–22.

    Article  CAS  Google Scholar 

  6. Klion AD, Robyn J, Akin C, Noel P, Brown M, Law M et al. Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood 2004; 103: 473–478.

    Article  CAS  Google Scholar 

  7. Jovanovic JV, Score J, Waghorn K, Cilloni D, Gottardi E, Metzgeroth G et al. Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood 2007; 109: 4635–4640.

    Article  CAS  Google Scholar 

  8. Baccarani M, Cilloni D, Rondoni M, Ottaviani E, Messa F, Merante S et al. The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica 2007; 92: 1173–1179.

    Article  CAS  Google Scholar 

  9. Klion AD, Robyn J, Maric I, Fu W, Schmid L, Lemery S et al. Relapse following discontinuation of imatinib mesylate therapy for FIP1L1/PDGFRA-positive chronic eosinophilic leukemia: implications for optimal dosing. Blood 2007; 110: 3552–3556.

    Article  CAS  Google Scholar 

  10. Griffin JH, Leung J, Bruner RJ, Caligiuri MA, Briesewitz R . Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci USA 2003; 100: 7830–7835.

    Article  CAS  Google Scholar 

  11. Ohnishi H, Kandabashi K, Maeda Y, Kawamura M, Watanabe T . Chronic eosinophilic leukaemia with FIP1L1-PDGFRA fusion and T674I mutation that evolved from Langerhans cell histiocytosis with eosinophilia after chemotherapy. Br J Haematol 2006; 134: 547–549.

    Article  CAS  Google Scholar 

  12. von Bubnoff N, Sandherr M, Schlimok G, Andreesen R, Peschel C, Duyster J . Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFRalpha-positive chronic myeloproliferative disease with prominent eosinophilia. Leukemia 2005; 19: 286–287.

    Article  CAS  Google Scholar 

  13. O’Hare T, Eide CA, Deininger MW . Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 2007; 110: 2242–2249.

    Article  Google Scholar 

  14. Lierman E, Folens C, Stover EH, Mentens N, Van Miegroet H, Scheers W et al. Sorafenib is a potent inhibitor of FIP1L1-PDGFRalpha and the imatinib-resistant FIP1L1-PDGFRalpha T674I mutant. Blood 2006; 108: 1374–1376.

    Article  CAS  Google Scholar 

  15. Cools J, Stover EH, Boulton CL, Gotlib J, Legare RD, Amaral SM et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell 2003; 3: 459–469.

    Article  CAS  Google Scholar 

  16. Stover EH, Chen J, Lee BH, Cools J, McDowell E, Adelsperger J et al. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFRbeta and FIP1L1-PDGFRalpha in vitro and in vivo. Blood 2005; 106: 3206–3213.

    Article  CAS  Google Scholar 

  17. von Bubnoff N, Gorantla SP, Thone S, Peschel C, Duyster J . The FIP1L1-PDGFRA T674I mutation can be inhibited by the tyrosine kinase inhibitor AMN107 (nilotinib). Blood 2006; 107: 4970–4971.

    Article  CAS  Google Scholar 

  18. Adnane L, Trail PA, Taylor I, Wilhelm SM . Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol 2006; 407: 597–612.

    Article  CAS  Google Scholar 

  19. Kane RC, Farrell AT, Saber H, Tang S, Williams G, Jee JM et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res 2006; 12: 7271–7278.

    Article  CAS  Google Scholar 

  20. Schwaller J, Frantsve J, Aster J, Williams IR, Tomasson MH, Ross TS et al. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J 1998; 17: 5321–5333.

    Article  CAS  Google Scholar 

  21. Baumgartner C, Gleixner KV, Peter B, Ferenc V, Gruze A, Remsing Rix LL et al. Dasatinib inhibits the growth and survival of neoplastic human eosinophils (EOL-1) through targeting of FIP1L1-PDGFRalpha. Exp Hematol 2008; 36: 1244–1253.

    Article  CAS  Google Scholar 

  22. Buitenhuis M, Verhagen LP, Cools J, Coffer PJ . Molecular mechanisms underlying FIP1L1-PDGFRA-mediated myeloproliferation. Cancer Res 2007; 67: 3759–3766.

    Article  CAS  Google Scholar 

  23. Heinrich MC, Corless CL, Demetri GD, Blanke CD, von MM, Joensuu H et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003; 21: 4342–4349.

    Article  CAS  Google Scholar 

  24. Dewaele B, Wasag B, Cools J, Sciot R, Prenen H, Vandenberghe P et al. Activity of dasatinib, a dual SRC/ABL kinase inhibitor, and IPI-504, a heat shock protein 90 inhibitor, against gastrointestinal stromal tumor-associated PDGFRAD842V mutation. Clin Cancer Res 2008; 14: 5749–5758.

    Article  CAS  Google Scholar 

  25. Krause DS, Van Etten RA . Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005; 353: 172–187.

    Article  CAS  Google Scholar 

  26. Bradeen HA, Eide CA, O’Hare T, Johnson KJ, Willis SG, Lee FY et al. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood 2006; 108: 2332–2338.

    Article  CAS  Google Scholar 

  27. Lierman E, Lahortiga I, Van MH, Mentens N, Marynen P, Cools J . The ability of sorafenib to inhibit oncogenic PDGFRbeta and FLT3 mutants and overcome resistance to other small molecule inhibitors. Haematologica 2007; 92: 27–34.

    Article  CAS  Google Scholar 

  28. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007; 356: 125–134.

    Article  CAS  Google Scholar 

  29. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378–390.

    Article  CAS  Google Scholar 

  30. Bagrintseva K, Geisenhof S, Kern R, Eichenlaub S, Reindl C, Ellwart JW et al. FLT3-ITD-TKD dual mutants associated with AML confer resistance to FLT3 PTK inhibitors and cytotoxic agents by overexpression of Bcl-x(L). Blood 2005; 105: 3679–3685.

    Article  CAS  Google Scholar 

  31. Stover EH, Chen J, Folens C, Lee BH, Mentens N, Marynen P et al. Activation of FIP1L1-PDGFRalpha requires disruption of the juxtamembrane domain of PDGFRalpha and is FIP1L1-independent. Proc Natl Acad Sci USA 2006; 103: 8078–8083.

    Article  CAS  Google Scholar 

  32. Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002; 99: 1928–1937.

    Article  CAS  Google Scholar 

  33. Thomas DA . Philadelphia chromosome positive acute lymphocytic leukemia: a new era of challenges. Hematology Am Soc Hematol Educ Program 2007; 2007: 435–443.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation against Cancer, foundation of public interest (SCIE2006-34) (JC), a Concerted Research Action Grant from the K.U. Leuven (PM, JC, PV), the ‘Fonds voor Wetenschappelijk Onderzoek Vlaanderen’ (FWO) (G.0203.07, PV) and IWT 060770 (PM, JC, PV).

EL is an Aspirant of the ‘Fonds voor Wetenschappelijk Onderzoek Vlaanderen’ (FWO), PV is a clinical researcher of the ‘Fonds voor Wetenschappelijk Onderzoek Vlaanderen’ (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Vandenberghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lierman, E., Michaux, L., Beullens, E. et al. FIP1L1-PDGFRα D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFRα T674I eosinophilic leukemia with single agent sorafenib. Leukemia 23, 845–851 (2009). https://doi.org/10.1038/leu.2009.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.2

Keywords

This article is cited by

Search

Quick links