Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Single-cell analysis reveals oligoclonality among ‘low-count’ monoclonal B-cell lymphocytosis

Abstract

Monoclonal B-cell lymphocytosis (MBL) is a preclinical hematologic syndrome characterized by small accumulations of CD5+ B lymphocytes. Most MBL share phenotypic characteristics with chronic lymphocytic leukemia (CLL). Although some MBL progress to CLL, most MBL have apparently limited potential for progression to CLL, particularly those MBL with normal absolute B-cell counts (‘low-count’ MBL). Most CLL are monoclonal and it is not known whether MBL are monoclonal or oligoclonal; this is important because it is unclear whether MBL represent indolent CLL or represent a distinct premalignant precursor before the development of CLL. We used flow cytometry analysis and sorting to determine immunophenotypic characteristics, clonality and molecular features of MBL from familial CLL kindreds. Single-cell analysis indicated four of six low-count MBL consisted of two or more unrelated clones; the other two MBL were monoclonal. 87% of low-count MBL clones had mutated immunoglobulin genes, and no immunoglobulin heavy-chain rearrangements of VH family 1 were observed. Some MBL were diversified, clonally related populations with evidence of antigen drive. We conclude that although low-count MBL share many phenotypic characteristics with CLL, many MBL are oligoclonal. This supports a model for step-wise development of MBL into CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  Google Scholar 

  2. Dighiero G, Hamblin TJ . Chronic lymphocytic leukaemia. Lancet 2008; 371: 1017–1029.

    Article  CAS  Google Scholar 

  3. Goldin LR, Bjorkholm M, Kristinsson SY, Turesson I, Landgren O . Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin's lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica 2009; 94: 647–653.

    Article  Google Scholar 

  4. Linet MS, Schubauer-Berigan MK, Weisenburger DD, Richardson DB, Landgren O, Blair A et al. Chronic lymphocytic leukaemia: an overview of aetiology in light of recent developments in classification and pathogenesis. Br J Haematol 2007; 139: 672–686.

    Article  Google Scholar 

  5. Fischer M, Klein U, Kuppers R . Molecular single-cell analysis reveals that CD5-positive peripheral blood B cells in healthy humans are characterized by rearranged Vkappa genes lacking somatic mutation. J Clin Invest 1997; 100: 1667–1676.

    Article  CAS  Google Scholar 

  6. Geiger KD, Klein U, Brauninger A, Berger S, Leder K, Rajewsky K et al. CD5-positive B cells in healthy elderly humans are a polyclonal B cell population. Eur J Immunol 2000; 30: 2918–2923.

    Article  CAS  Google Scholar 

  7. Klein U, Rajewsky K, Kuppers R . Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 1998; 188: 1679–1689.

    Article  CAS  Google Scholar 

  8. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998; 102: 1515–1525.

    Article  CAS  Google Scholar 

  9. Weinberg JB, Volkheimer AD, Chen Y, Beasley BE, Jiang N, Lanasa MC et al. Clinical and molecular predictors of disease severity and survival in chronic lymphocytic leukemia. Am J Hematol 2007; 82: 1063–1070.

    Article  CAS  Google Scholar 

  10. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute–Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  Google Scholar 

  11. Marti GE, Rawstron AC, Ghia P, Hillmen P, Houlston RS, Kay N et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol 2005; 130: 325–332.

    Article  Google Scholar 

  12. Marti G, Abbasi F, Raveche E, Rawstron AC, Ghia P, Aurran T et al. Overview of monoclonal B-cell lymphocytosis. Br J Haematol 2007; 139: 701–708.

    Article  CAS  Google Scholar 

  13. Ghia P, Prato G, Scielzo C, Stella S, Geuna M, Guida G et al. Monoclonal CD5+ and CD5- B-lymphocyte expansions are frequent in the peripheral blood of the elderly. Blood 2004; 103: 2337–2342.

    Article  CAS  Google Scholar 

  14. Rawstron AC, Green MJ, Kuzmicki A, Kennedy B, Fenton JA, Evans PA et al. Monoclonal B lymphocytes with the characteristics of ‘indolent’ chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood 2002; 100: 635–639.

    Article  CAS  Google Scholar 

  15. Nieto WG, Almeida J, Romero A, Teodosio C, Lopez A, Henriques AF et al. Increased frequency (12%) of circulating chronic lymphocytic leukemia-like B-cell clones in healthy subjects using a highly sensitive multicolor flow cytometry approach. Blood 2009; 114: 33–37.

    Article  CAS  Google Scholar 

  16. Rawstron AC, Yuille MR, Fuller J, Cullen M, Kennedy B, Richards SJ et al. Inherited predisposition to CLL is detectable as subclinical monoclonal B-lymphocyte expansion. Blood 2002; 100: 2289–2290.

    Article  CAS  Google Scholar 

  17. Marti GE, Carter P, Abbasi F, Washington GC, Jain N, Zenger VE et al. B-cell monoclonal lymphocytosis and B-cell abnormalities in the setting of familial B-cell chronic lymphocytic leukemia. Cytometry B Clin Cytom 2003; 52: 1–12.

    Article  Google Scholar 

  18. Rawstron AC, Bennett FL, O’Connor SJ, Kwok M, Fenton JA, Plummer M et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med 2008; 359: 575–583.

    Article  CAS  Google Scholar 

  19. Landgren O, Albitar M, Ma W, Abbasi F, Hayes RB, Ghia P et al. B-cell clones as early markers for chronic lymphocytic leukemia. N Engl J Med 2009; 360: 659–667.

    Article  CAS  Google Scholar 

  20. Dagklis A, Fazi C, Sala C, Cantarelli V, Scielzo C, Massacane R et al. The immunoglobulin gene repertoire of low-count chronic lymphocytic leukemia (CLL)-like monoclonal B lymphocytosis is different from CLL: diagnostic implications for clinical monitoring. Blood 2009; 114: 26–32.

    Article  CAS  Google Scholar 

  21. Cheson BD, Bennett JM, Grever M, Kay N, Keating MJ, O’Brien S et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 1996; 87: 4990–4997.

    CAS  Google Scholar 

  22. Volkheimer AD, Weinberg JB, Beasley BE, Whitesides JF, Gockerman JP, Moore JO et al. Progressive immunoglobulin gene mutations in chronic lymphocytic leukemia: evidence for antigen-driven intraclonal diversification. Blood 2007; 109: 1559–1567.

    Article  CAS  Google Scholar 

  23. Lefranc MP, Giudicelli V, Kaas Q, Duprat E, Jabado-Michaloud J, Scaviner D et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 2005; 33 (Database issue): D593–D597.

    Article  CAS  Google Scholar 

  24. Lossos IS, Tibshirani R, Narasimhan B, Levy R . The inference of antigen selection on Ig genes. J Immunol 2000; 165: 5122–5126.

    Article  CAS  Google Scholar 

  25. Gurrieri C, McGuire P, Zan H, Yan XJ, Cerutti A, Albesiano E et al. Chronic lymphocytic leukemia B cells can undergo somatic hypermutation and intraclonal immunoglobulin V(H)DJ(H) gene diversification. J Exp Med 2002; 196: 629–639.

    Article  CAS  Google Scholar 

  26. Abbasi F, Longo NS, Lipsky PE, Raveche E, Schleinitz TA, Stetler-Stevenson M et al. B-cell repertoire and clonal analysis in unaffected first degree relatives in familial chronic lymphocytic leukaemia kindred. Br J Haematol 2007; 139: 820–823.

    Article  CAS  Google Scholar 

  27. Rawstron AC, Bennett F, Hillmen P . The biological and clinical relationship between CD5+23+ monoclonal B-cell lymphocytosis and chronic lymphocytic leukaemia. Br J Haematol 2007; 139: 724–729.

    Article  Google Scholar 

  28. Degan M, Bomben R, Bo MD, Zucchetto A, Nanni P, Rupolo M et al. Analysis of IgV gene mutations in B cell chronic lymphocytic leukaemia according to antigen-driven selection identifies subgroups with different prognosis and usage of the canonical somatic hypermutation machinery. Br J Haematol 2004; 126: 29–42.

    Article  CAS  Google Scholar 

  29. Efremov DG, Ivanovski M, Batista FD, Pozzato G, Burrone OR . IgM-producing chronic lymphocytic leukemia cells undergo immunoglobulin isotype-switching without acquiring somatic mutations. J Clin Invest 1996; 98: 290–298.

    Article  CAS  Google Scholar 

  30. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  Google Scholar 

  31. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  Google Scholar 

  32. Fung SS, Hillier KL, Leger CS, Sandhu I, Vickars LM, Galbraith PF et al. Clinical progression and outcome of patients with monoclonal B-cell lymphocytosis. Leuk Lymphoma 2007; 48: 1087–1091.

    Article  Google Scholar 

  33. Shanafelt TD, Kay NE, Call TG, Zent CS, Jelinek DF, LaPlant B et al. MBL or CLL: which classification best categorizes the clinical course of patients with an absolute lymphocyte count >or=5 × 10(9) L(−1) but a B-cell lymphocyte count Leuk Res 2008; 32: 1458–1461.

    Article  CAS  Google Scholar 

  34. Chang H, Cerny J . Molecular characterization of chronic lymphocytic leukemia with two distinct cell populations: evidence for separate clonal origins. Am J Clin Pathol 2006; 126: 23–28.

    Article  CAS  Google Scholar 

  35. Herve M, Xu K, Ng YS, Wardemann H, Albesiano E, Messmer BT et al. Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest 2005; 115: 1636–1643.

    Article  CAS  Google Scholar 

  36. Ghia P, Stamatopoulos K, Belessi C, Moreno C, Stella S, Guida G et al. Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood 2005; 105: 1678–1685.

    Article  CAS  Google Scholar 

  37. Murray F, Darzentas N, Hadzidimitriou A, Tobin G, Boudjogra M, Scielzo C et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood 2008; 111: 1524–1533.

    Article  CAS  Google Scholar 

  38. Brezinschek HP, Foster SJ, Brezinschek RI, Dorner T, Domiati-Saad R, Lipsky PE . Analysis of the human VH gene repertoire. Differential effects of selection and somatic hypermutation on human peripheral CD5(+)/IgM+ and CD5(−)/IgM+ B cells. J Clin Invest 1997; 99: 2488–2501.

    Article  CAS  Google Scholar 

  39. Krober A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 2002; 100: 1410–1416.

    CAS  Google Scholar 

  40. Ng D, Toure O, Wei MH, Arthur DC, Abbasi F, Fontaine L et al. Identification of a novel chromosome region, 13q21.33–q22.2, for susceptibility genes in familial chronic lymphocytic leukemia. Blood 2007; 109: 916–925.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Andy Rawstron for his thoughtful review of this paper. We thank the study participants for their willingness to participate in this study, and the hematology-oncology physicians, nurses and physician assistants for their special help. Flow cytometry was performed in the Duke Human Vaccine Institute Flow Cytometry Core Facility that is supported by the National Institutes of Health award AI-51445.

Grant Support: MC Lanasa is a fellow of the Leukemia and Lymphoma Society of America. This research was funded by the Bernstein Fund for Leukemia Research, the VA Research Service and a grant from the National Institutes of Health (NCI R03 CA128030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Lanasa.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanasa, M., Allgood, S., Volkheimer, A. et al. Single-cell analysis reveals oligoclonality among ‘low-count’ monoclonal B-cell lymphocytosis. Leukemia 24, 133–140 (2010). https://doi.org/10.1038/leu.2009.192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.192

Keywords

This article is cited by

Search

Quick links