Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Stem cell traits in long-term co-culture revealed by time-lapse imaging

Abstract

A deeper understanding of stem cell niche engagement and subsequent behaviors would be enhanced by technologies enabling the tracking of individual stem cells at the clonal level in long-term co-culture (LTC), which mimics the complexity of the bone marrow microenvironment in vivo. Here, we report the application of time-lapse imaging with intermittent fluorescence for tracking well-defined populations of GFP+ murine hematopoietic stem cells (HSCs) using LTC for >5 weeks. Long-term (LT) and short-term (ST) repopulating HSCs and hematopoietic progenitor cells (HPCs) were compared. The transition from cobblestone areas (CAs) under the stromal cell mantle into dispersed migrating cells on top of the stroma (COS) were directly observed. The ST-HSC and LT-HSC were able to initiate multiple waves of CA formation and COS expansion beyond 2 and 4 weeks, respectively. Retrospective tracking of individual CA forming cell (CAFC) revealed a preference for residing under stroma before the first division and a longer interval before first division for LT-HSC. Inability to maintain quiescence in subsequent divisions was revealed. Our study represents an important starting point from which the LTC system can be augmented to provide a better in vitro model for bone marrow stem cell niches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cheng T . Toward ‘SMART’ stem cells. Gene Ther 2008; 15: 67–73.

    Article  CAS  Google Scholar 

  2. Scadden DT . The stem-cell niche as an entity of action. Nature 2006; 441: 1075–1079.

    Article  CAS  Google Scholar 

  3. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC . Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 1797–1806.

    Article  CAS  Google Scholar 

  4. Osawa M, Hanada K, Hamada H, Nakauchi H . Long-term lymphohematopoietic reconstitution by a single CD34− low/negative hematopoietic stem cell. Science 1996; 273: 242–245.

    Article  CAS  Google Scholar 

  5. Ema H, Takano H, Sudo K, Nakauchi H . In vitro self-renewal division of hematopoietic stem cells. J Exp Med 2000; 192: 1281–1288.

    Article  CAS  Google Scholar 

  6. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL . The aging of hematopoietic stem cells [see comments]. Nat Med 1996; 2: 1011–1016.

    Article  CAS  Google Scholar 

  7. Wagers AJ, Weissman IL . Differential expression of alpha2 integrin separates long-term and short-term reconstituting Lin-/loThy1.1(lo)c-kit+ Sca-1+ hematopoietic stem cells. Stem Cells 2006; 24: 1087–1094.

    Article  CAS  Google Scholar 

  8. Krosl J, Austin P, Beslu N, Kroon E, Humphries RK, Sauvageau G . In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med 2003; 9: 1428–1432.

    Article  CAS  Google Scholar 

  9. Bianco P, Robey PG, Simmons PJ . Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008; 2: 313–319.

    Article  CAS  Google Scholar 

  10. Dexter TM, Allen TD, Lajtha LG . Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 1977; 91: 335–344.

    Article  CAS  Google Scholar 

  11. Dexter TM, Moore MA, Sheridan AP . Maintenance of hemopoietic stem cells and production of differentiated progeny in allogeneic and semiallogeneic bone marrow chimeras in vitro. J Exp Med 1977; 145: 1612–1616.

    Article  CAS  Google Scholar 

  12. Schofield R . The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4: 7–25.

    CAS  Google Scholar 

  13. Frimberger AE, Stering AI, Quesenberry PJ . Characterization of engraftable hematopoietic stem cells in murine long-term bone marrow cultures. Exp Hematol 2001; 29: 643–652.

    Article  CAS  Google Scholar 

  14. Moore KA, Lemischka IR . Stem cells and their niches. Science 2006; 311: 1880–1885.

    Article  CAS  Google Scholar 

  15. Frimberger AE, McAuliffe CI, Werme KA, Tuft RA, Fogarty KE, Benoit BO et al. The fleet feet of haematopoietic stem cells: rapid motility, interaction and proteopodia. Br J Haematol 2001; 112: 644–654.

    Article  CAS  Google Scholar 

  16. Wagner W, Saffrich R, Wirkner U, Eckstein V, Blake J, Ansorge A et al. Hematopoietic progenitor cells and cellular microenvironment: behavioral and molecular changes upon interaction. Stem Cells 2005; 23: 1180–1191.

    Article  CAS  Google Scholar 

  17. Rieger MA, Schroeder T . Exploring hematopoiesis at single cell resolution. Cells Tissues Organs 2008; 188: 139–149.

    Article  Google Scholar 

  18. Wu M, Kwon HY, Rattis F, Blum J, Zhao C, Ashkenazi R et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 2007; 1: 541–554.

    Article  CAS  Google Scholar 

  19. Ploemacher RE, van der Sluijs JP, van Beurden CA, Baert MR, Chan PL . Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood 1991; 78: 2527–2533.

    CAS  Google Scholar 

  20. de Haan G, Van Zant G . Intrinsic and extrinsic control of hemopoietic stem cell numbers: mapping of a stem cell gene. J Exp Med 1997; 186: 529–536.

    Article  CAS  Google Scholar 

  21. Absher PM, Absher RG . Clonal variation and aging of diploid fibroblasts. Cinematographic studies of cell pedigrees. Exp Cell Res 1976; 103: 247–255.

    Article  CAS  Google Scholar 

  22. Nadarajah B, Alifragis P, Wong RO, Parnavelas JG . Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cereb Cortex 2003; 13: 607–611.

    Article  CAS  Google Scholar 

  23. DiMilla PA, Stone JA, Quinn JA, Albelda SM, Lauffenburger DA . Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J Cell Biol 1993; 122: 729–737.

    Article  CAS  Google Scholar 

  24. Dykstra B, Ramunas J, Kent D, McCaffrey L, Szumsky E, Kelly L et al. High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal. Proc Natl Acad Sci USA 2006; 103: 8185–8190.

    Article  CAS  Google Scholar 

  25. Frimberger AE, Stering AI, Quesenberry PJ . An in vitro model of hematopoietic stem cell homing demonstrates rapid homing and maintenance of engraftable stem cells. Blood 2001; 98: 1012–1018.

    Article  CAS  Google Scholar 

  26. Neumann B, Held M, Liebel U, Erfle H, Rogers P, Pepperkok R et al. High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 2006; 3: 385–390.

    Article  CAS  Google Scholar 

  27. Schroeder T . Tracking hematopoiesis at the single cell level. Ann NY Acad Sci 2005; 1044: 201–209.

    Article  Google Scholar 

  28. Bahnson A, Athanassiou C, Koebler D, Qian L, Shun T, Shields D et al. Automated measurement of cell motility and proliferation. BMC Cell Biol 2005; 6: 19.

    Article  Google Scholar 

  29. Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T . In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol 2004; 6: 436–442.

    Article  CAS  Google Scholar 

  30. Takano H, Ema H, Sudo K, Nakauchi H . Asymmetric division and lineage commitment at the level of hematopoietic stem cells: inference from differentiation in daughter cell and granddaughter cell pairs. J Exp Med 2004; 199: 295–302.

    Article  CAS  Google Scholar 

  31. van der Sluijs JP, de Jong JP, Brons NH, Ploemacher RE . Marrow repopulating cells, but not CFU-S, establish long-term in vitro hemopoiesis on a marrow-derived stromal layer. Exp Hematol 1990; 18: 893–896.

    CAS  Google Scholar 

  32. Breems DA, Blokland EA, Siebel KE, Mayen AE, Engels LJ, Ploemacher RE . Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells. Blood 1998; 91: 111–117.

    CAS  Google Scholar 

  33. Ploemacher RE, van der Sluijs JP, Voerman JS, Brons NH . An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 1989; 74: 2755–2763.

    CAS  Google Scholar 

  34. Gorbunov NV, Pogue-Geile KL, Epperly MW, Bigbee WL, Draviam R, Day BW et al. Activation of the nitric oxide synthase 2 pathway in the response of bone marrow stromal cells to high doses of ionizing radiation. Radiat Res 2000; 154: 73–86.

    Article  CAS  Google Scholar 

  35. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD . Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 2007; 104: 5431–5436.

    Article  CAS  Google Scholar 

  36. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 135: 1118–1129.

    Article  CAS  Google Scholar 

  37. Kohler A, Schmithorst V, Filippi MD, Ryan MA, Daria D, Gunzer M et al. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 2009; 114: 290–298.

    Article  Google Scholar 

  38. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 2009; 457: 97–101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Sallie Boggs for helpful discussion and stimulating suggestions, and Julie Goff for help collecting data. We thank Charalambos Athanassiou and Lei Qian for maintaining the automatic system and for statistical analysis. This investigation was supported by the NIH grants RO1 EB 001051 (to RH), R01 AI080424 and RO1 HL 075601 (to TC). TC was a recipient of the Scholar Award from the Leukemia & Lymphoma Society (1027-09), a recipient of the Changjiang Scholarship from the Ministry of Education of China (2007-JGT-08) and a recipient of the Outstanding Young Scholar Award from the National Natural Science Foundation of China (30825017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Cheng.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Bahnson, A., Hall, N. et al. Stem cell traits in long-term co-culture revealed by time-lapse imaging. Leukemia 24, 153–161 (2010). https://doi.org/10.1038/leu.2009.191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.191

Keywords

This article is cited by

Search

Quick links