Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Cyclin D1 as a universally expressed mantle cell lymphoma-associated tumor antigen for immunotherapy

Abstract

Mantle cell lymphoma (MCL) accounts for 5–10% of all non-Hodgkin lymphomas and has the worst prognosis among all lymphomas. The hallmark of MCL is a t(11;14) translocation that results in overexpression of cyclin D1 by tumor cells of virtually all patients. In this study, we examined whether cyclin D1 could be an effective tumor-associated antigen for immunotherapy. We identified cyclin D1 peptides for HLA-A*0201 and generated peptide-specific CD8+ T-cell lines from HLA-A*0201+ blood donors and MCL patients. These cell lines proliferated in response to cyclin D1 peptide-pulsed stimulatory cells. Moreover, the T cells efficiently lysed peptide-pulsed but not unpulsed T2 cells and autologous dendritic cells; cyclin D1+ and HLA-A*0201+ human MCL lines MINO, SP53, Jeko-1 and Granta 519; and more importantly, HLA-A*0201+ primary lymphoma cells from MCL patients. No killing was observed with HLA-A*0201 primary lymphoma cells or HLA-A*0201+ normal blood cells, including B cells. These results indicate that these T cells are potent cytotoxic T cells and recognize cyclin D1 peptides naturally presented by patient lymphoma cells in the context of HLA-A*0201 molecules. Taken together, our work identifies cyclin D1 as a potentially important antigen for immunotherapy of MCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pinyol M, Bea S, Pla L, Ribrag V, Bosq J, Rosenwald A et al. Inactivation of RB1 in mantle-cell lymphoma detected by nonsense-mediated mRNA decay pathway inhibition and microarray analysis. Blood 2007; 109: 5422–5429.

    Article  CAS  PubMed  Google Scholar 

  2. Zelenetz AD . Mantle cell lymphoma: an update on management. Ann Oncol 2006; 17 (Suppl 4): iv12–iv14.

    Article  PubMed  Google Scholar 

  3. Martin P, Leonard JP . Novel therapeutic targets in mantle cell lymphoma. Expert Opin Ther Targets 2007; 11: 929–940.

    Article  CAS  PubMed  Google Scholar 

  4. Evens AM, Winter JN, Hou N, Nelson BP, Rademaker A, Patton D et al. A phase II clinical trial of intensive chemotherapy followed by consolidative stem cell transplant: long-term follow-up in newly diagnosed mantle cell lymphoma. Br J Haematol 2008; 140: 385–393.

    Article  CAS  PubMed  Google Scholar 

  5. Bertoni F, Ponzoni M . The cellular origin of mantle cell lymphoma. Int J Biochem Cell Biol 2007; 39: 1747–1753.

    Article  CAS  PubMed  Google Scholar 

  6. Campo E, Raffeld M, Jaffe ES . Mantle-cell lymphoma. Semin Hematol 1999; 36: 115–127.

    CAS  PubMed  Google Scholar 

  7. June CH . Adoptive T cell therapy for cancer in the clinic. J Clin Invest 2007; 117: 1466–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Osterroth F, Garbe A, Fisch P, Veelken H . Stimulation of cytotoxic T cells against idiotype immunoglobulin of malignant lymphoma with protein-pulsed or idiotype-transduced dendritic cells. Blood 2000; 95: 1342–1349.

    CAS  PubMed  Google Scholar 

  9. Schultze JL, Seamon MJ, Michalak S, Gribben JG, Nadler LM . Autologous tumor infiltrating T cells cytotoxic for follicular lymphoma cells can be expanded in vitro. Blood 1997; 89: 3806–3816.

    CAS  PubMed  Google Scholar 

  10. Wen YJ, Barlogie B, Yi Q . Idiotype-specific cytotoxic T lymphocytes in multiple myeloma: evidence for their capacity to lyse autologous primary tumor cells. Blood 2001; 97: 1750–1755.

    Article  CAS  PubMed  Google Scholar 

  11. Kwak LW, Campbell MJ, Czerwinski DK, Hart S, Miller RA, Levy R . Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N Engl J Med 1992; 327: 1209–1215.

    Article  CAS  PubMed  Google Scholar 

  12. Franki SN, Steward KK, Betting DJ, Kafi K, Yamada RE, Timmerman JM . Dendritic cells loaded with apoptotic antibody-coated tumor cells provide protective immunity against B-cell lymphoma in vivo. Blood 2008; 111: 1504–1511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fernandez V, Hartmann E, Ott G, Campo E, Rosenwald A . Pathogenesis of mantle-cell lymphoma: all oncogenic roads lead to dysregulation of cell cycle and DNA damage response pathways. J Clin Oncol 2005; 23: 6364–6369.

    Article  CAS  PubMed  Google Scholar 

  14. Amin HM, McDonnell TJ, Medeiros LJ, Rassidakis GZ, Leventaki V, O’Connor SL et al. Characterization of 4 mantle cell lymphoma cell lines. Arch Pathol Lab Med 2003; 127: 424–431.

    PubMed  Google Scholar 

  15. Jares P, Colomer D, Campo E . Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 2007; 7: 750–762.

    Article  CAS  PubMed  Google Scholar 

  16. Klier M, Anastasov N, Hermann A, Meindl T, Angermeier D, Raffeld M et al. Specific lentiviral shRNA-mediated knockdown of cyclin D1 in mantle cell lymphoma has minimal effects on cell survival and reveals a regulatory circuit with cyclin D2. Leukemia 2008; 22: 2097–2105.

    Article  CAS  PubMed  Google Scholar 

  17. Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B et al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 1996; 196: 137–151.

    Article  CAS  PubMed  Google Scholar 

  18. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994; 179: 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  19. Anton D, Dabadghao S, Palucka K, Holm G, Yi Q . Generation of dendritic cells from peripheral blood adherent cells in medium with human serum. Scand J Immunol 1998; 47: 116–121.

    Article  CAS  PubMed  Google Scholar 

  20. Nijman HW, Houbiers JG, Vierboom MP, van der Burg SH, Drijfhout JW, D’Amaro J et al. Identification of peptide sequences that potentially trigger HLA-A2.1-restricted cytotoxic T lymphocytes. Eur J Immunol 1993; 23: 1215–1219.

    Article  CAS  PubMed  Google Scholar 

  21. Qian J, Xie J, Hong S, Yang J, Zhang L, Han X et al. Dickkopf-1 (DKK1) is a widely expressed and potent tumor-associated antigen in multiple myeloma. Blood 2007; 110: 1587–1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qian J, Wang S, Yang J, Xie J, Lin P, Freeman ME et al. Targeting heat shock proteins for immunotherapy in multiple myeloma: generation of myeloma-specific CTLs using dendritic cells pulsed with tumor-derived gp96. Clin Cancer Res 2005; 11: 8808–8815.

    Article  CAS  PubMed  Google Scholar 

  23. Fulcher D, Wong S . Carboxyfluorescein succinimidyl ester-based proliferative assays for assessment of T cell function in the diagnostic laboratory. Immunol Cell Biol 1999; 77: 559–564.

    Article  CAS  PubMed  Google Scholar 

  24. Yi Q, Bergenbrant S, Osterborg A, Osby E, Ostman R, Bjorkholm M et al. T-cell stimulation induced by idiotypes on monoclonal immunoglobulins in patients with monoclonal gammopathies. Scand J Immunol 1993; 38: 529–534.

    Article  CAS  PubMed  Google Scholar 

  25. Yi Q, Osterborg A, Bergenbrant S, Mellstedt H, Holm G, Lefvert AK . Idiotype-reactive T-cell subsets and tumor load in monoclonal gammopathies. Blood 1995; 86: 3043–3049.

    CAS  PubMed  Google Scholar 

  26. Tourdot S, Scardino A, Saloustrou E, Gross DA, Pascolo S, Cordopatis P et al. A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol 2000; 30: 3411–3421.

    Article  CAS  PubMed  Google Scholar 

  27. Chen JL, Dunbar PR, Gileadi U, Jager E, Gnjatic S, Nagata Y et al. Identification of NY-ESO-1 peptide analogues capable of improved stimulation of tumor-reactive CTL. J Immunol 2000; 165: 948–955.

    Article  CAS  PubMed  Google Scholar 

  28. Tsomides TJ, Walker BD, Eisen HN . An optimal viral peptide recognized by CD8+ T cells binds very tightly to the restricting class I major histocompatibility complex protein on intact cells but not to the purified class I protein. Proc Natl Acad Sci USA 1991; 88: 11276–11280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dyall J, Latouche JB, Schnell S, Sadelain M . Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood 2001; 97: 114–121.

    Article  CAS  PubMed  Google Scholar 

  30. de Jong R, Brouwer M, Miedema F, van Lier RA . Human CD8+ T lymphocytes can be divided into CD45RA+ and CD45RO+ cells with different requirements for activation and differentiation. J Immunol 1991; 146: 2088–2094.

    CAS  PubMed  Google Scholar 

  31. Cobb BS, Hertweck A, Smith J, O’Connor E, Graf D, Cook T et al. A role for Dicer in immune regulation. J Exp Med 2006; 203: 2519–2527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woodland DL, Dutton RW . Heterogeneity of CD4(+) and CD8(+) T cells. Curr Opin Immunol 2003; 15: 336–342.

    Article  CAS  PubMed  Google Scholar 

  33. Pulendran B, Dillon S, Joseph C, Curiel T, Banchereau J, Mohamadzadeh M . Dendritic cells generated in the presence of GM-CSF plus IL-15 prime potent CD8+ Tc1 responses in vivo. Eur J Immunol 2004; 34: 66–73.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Renkvist N, Sun Z, Schuler-Thurner B, Glaichenhaus N, Schuler G et al. A polyclonal anti-vaccine CD4 T cell response detected with HLA-DP4 multimers in a melanoma patient vaccinated with MAGE-3.DP4-peptide-pulsed dendritic cells. Eur J Immunol 2005; 35: 1066–1075.

    Article  CAS  PubMed  Google Scholar 

  35. Berzofsky JA, Terabe M, Oh S, Belyakov IM, Ahlers JD, Janik JE et al. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest 2004; 113: 1515–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM . The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 1999; 10: 673–679.

    Article  CAS  PubMed  Google Scholar 

  37. Vonderheide RH, Anderson KS, Hahn WC, Butler MO, Schultze JL, Nadler LM . Characterization of HLA-A3-restricted cytotoxic T lymphocytes reactive against the widely expressed tumor antigen telomerase. Clin Cancer Res 2001; 7: 3343–3348.

    CAS  PubMed  Google Scholar 

  38. Schmitz M, Diestelkoetter P, Weigle B, Schmachtenberg F, Stevanovic S, Ockert D et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res 2000; 60: 4845–4849.

    CAS  PubMed  Google Scholar 

  39. Andersen MH, Pedersen LO, Becker JC, Straten PT . Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 2001; 61: 869–872.

    CAS  PubMed  Google Scholar 

  40. Pisarev V, Yu B, Salup R, Sherman S, Altieri DC, Gabrilovich DI . Full-length dominant-negative survivin for cancer immunotherapy. Clin Cancer Res 2003; 9: 6523–6533.

    CAS  PubMed  Google Scholar 

  41. Gross DA, Graff-Dubois S, Opolon P, Cornet S, Alves P, Bennaceur-Griscelli A et al. High vaccination efficiency of low-affinity epitopes in antitumor immunotherapy. J Clin Invest 2004b; 113: 425–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuriyama H, Shimizu K, Lee W, Kjaergaard J, Parkhurst MR, Cohen PA et al. Therapeutic vaccine generated by electrofusion of dendritic cells and tumour cells. Dev Biol (Basel) 2004; 116: 169–178; discussion 179–186.

    CAS  Google Scholar 

  43. Otto K, Andersen MH, Eggert A, Keikavoussi P, Pedersen LO, Rath JC et al. Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin. Vaccine 2005; 23: 884–889.

    Article  CAS  PubMed  Google Scholar 

  44. Marzec M, Kasprzycka M, Lai R, Gladden AB, Wlodarski P, Tomczak E et al. Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase activity. Blood 2006; 108: 1744–1750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Witzig TE . Current treatment approaches for mantle-cell lymphoma. J Clin Oncol 2005; 23: 6409–6414.

    Article  CAS  PubMed  Google Scholar 

  46. Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF et al. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 1993; 7: 1559–1571.

    Article  CAS  PubMed  Google Scholar 

  47. Lu XL, Jiang XB, Liu RE, Zhang FC, Zhao HY . Generation of allo-restricted cytotoxic T lymphocytes against malignant glioma by artificial antigen-presenting cells. Cancer Lett 2007; 256: 128–135.

    Article  CAS  PubMed  Google Scholar 

  48. Coiffier B, Haioun C, Ketterer N, Engert A, Tilly H, Ma D et al. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood 1998; 92: 1927–1932.

    CAS  PubMed  Google Scholar 

  49. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998; 16: 2825–2833.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alison Woo for providing editorial assistance. This work was supported by the institutional start-up funds from The University of Texas M.D. Anderson Cancer Center, National Cancer Institute Grants (R01 CA96569 and R01 CA103978), Commonwealth Foundation for Cancer Research and funds from the Crutchfield family and the Kimmel family philanthropic foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Sun, L., Qian, J. et al. Cyclin D1 as a universally expressed mantle cell lymphoma-associated tumor antigen for immunotherapy. Leukemia 23, 1320–1328 (2009). https://doi.org/10.1038/leu.2009.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.19

Keywords

This article is cited by

Search

Quick links